期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Prioritizing Network-On-Chip Routers for Countermeasure Techniques against Flooding Denial-of-Service Attacks:A Fuzzy Multi-Criteria Decision-Making Approach
1
作者 Ahmed Abbas Jasim Al-Hchaimi Yousif Raad Muhsen +4 位作者 Wisam Hazim Gwad Entisar Soliman Alkayal Riyadh Rahef Nuiaa Al Ogaili Zaid Abdi Alkareem Alyasseri Alhamzah Alnoor 《Computer Modeling in Engineering & Sciences》 2025年第3期2661-2689,共29页
The implementation of Countermeasure Techniques(CTs)in the context of Network-On-Chip(NoC)based Multiprocessor System-On-Chip(MPSoC)routers against the Flooding Denial-of-Service Attack(F-DoSA)falls under Multi-Criter... The implementation of Countermeasure Techniques(CTs)in the context of Network-On-Chip(NoC)based Multiprocessor System-On-Chip(MPSoC)routers against the Flooding Denial-of-Service Attack(F-DoSA)falls under Multi-Criteria Decision-Making(MCDM)due to the three main concerns,called:traffic variations,multiple evaluation criteria-based traffic features,and prioritization NoC routers as an alternative.In this study,we propose a comprehensive evaluation of various NoC traffic features to identify the most efficient routers under the F-DoSA scenarios.Consequently,an MCDM approach is essential to address these emerging challenges.While the recent MCDM approach has some issues,such as uncertainty,this study utilizes Fuzzy-Weighted Zero-Inconsistency(FWZIC)to estimate the criteria weight values and Fuzzy Decision by Opinion Score Method(FDOSM)for ranking the routers with fuzzy Single-valued Neutrosophic under names(SvN-FWZIC and SvN-FDOSM)to overcome the ambiguity.The results obtained by using the SvN-FWZIC method indicate that the Max packet count has the highest importance among the evaluated criteria,with a weighted score of 0.1946.In contrast,the Hop count is identified as the least significant criterion,with a weighted score of 0.1090.The remaining criteria fall within a range of intermediate importance,with enqueue time scoring 0.1845,packet count decremented and traversal index scoring 0.1262,packet count incremented scoring 0.1124,and packet count index scoring 0.1472.In terms of ranking,SvN-FDOSM has two approaches:individual and group.Both the individual and group ranking processes show that(Router 4)is the most effective router,while(Router 3)is the lowest router under F-DoSA.The sensitivity analysis provides a high stability in ranking among all 10 scenarios.This approach offers essential feedback in making proper decisions in the design of countermeasure techniques in the domain of NoC-based MPSoC. 展开更多
关键词 NoC-based MPSoC security flooding DoS attack MCDM FDOSM FWZIC fuzzy set
在线阅读 下载PDF
Multi-objective Markov-enhanced adaptive whale optimization cybersecurity model for binary and multi-class malware cyberthreat classification
2
作者 Saif Ali Abd Alradha Alsaidi Riyadh Rahef Nuiaa Al Ogaili +3 位作者 Zaid Abdi Alkareem Alyasseri Dhiah Al-Shammary Ayman Ibaida Adam Slowik 《Journal of Electronic Science and Technology》 2025年第4期95-112,共18页
The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making... The rapid and increasing growth in the volume and number of cyber threats from malware is not a real danger;the real threat lies in the obfuscation of these cyberattacks,as they constantly change their behavior,making detection more difficult.Numerous researchers and developers have devoted considerable attention to this topic;however,the research field has not yet been fully saturated with high-quality studies that address these problems.For this reason,this paper presents a novel multi-objective Markov-enhanced adaptive whale optimization(MOMEAWO)cybersecurity model to improve the classification of binary and multi-class malware threats through the proposed MOMEAWO approach.The proposed MOMEAWO cybersecurity model aims to provide an innovative solution for analyzing,detecting,and classifying the behavior of obfuscated malware within their respective families.The proposed model includes three classification types:Binary classification and multi-class classification(e.g.,four families and 16 malware families).To evaluate the performance of this model,we used a recently published dataset called the Canadian Institute for Cybersecurity Malware Memory Analysis(CIC-MalMem-2022)that contains balanced data.The results show near-perfect accuracy in binary classification and high accuracy in multi-class classification compared with related work using the same dataset. 展开更多
关键词 Malware cybersecurity attacks Malware detection and classification Markov chain Multi-objective MOMEAWO cybersecurity model
在线阅读 下载PDF
Feature Selection for Detecting ICMPv6-Based DDoS Attacks Using Binary Flower Pollination Algorithm
3
作者 Adnan Hasan Bdair Aighuraibawi Selvakumar Manickam +6 位作者 Rosni Abdullah Zaid Abdi Alkareem Alyasseri Ayman Khallel Dilovan Asaad Zebari Hussam Mohammed Jasim Mazin Mohammed Abed Zainb Hussein Arif 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期553-574,共22页
Internet Protocol version 6(IPv6)is the latest version of IP that goal to host 3.4×10^(38)unique IP addresses of devices in the network.IPv6 has introduced new features like Neighbour Discovery Protocol(NDP)and A... Internet Protocol version 6(IPv6)is the latest version of IP that goal to host 3.4×10^(38)unique IP addresses of devices in the network.IPv6 has introduced new features like Neighbour Discovery Protocol(NDP)and Address Auto-configuration Scheme.IPv6 needed several protocols like the Address Auto-configuration Scheme and Internet Control Message Protocol(ICMPv6).IPv6 is vulnerable to numerous attacks like Denial of Service(DoS)and Distributed Denial of Service(DDoS)which is one of the most dangerous attacks executed through ICMPv6 messages that impose security and financial implications.Therefore,an Intrusion Detection System(IDS)is a monitoring system of the security of a network that detects suspicious activities and deals with amassive amount of data comprised of repetitive and inappropriate features which affect the detection rate.A feature selection(FS)technique helps to reduce the computation time and complexity by selecting the optimum subset of features.This paper proposes a method for detecting DDoS flooding attacks(FA)based on ICMPv6 messages using a Binary Flower PollinationAlgorithm(BFPA-FA).The proposed method(BFPA-FA)employs FS technology with a support vector machine(SVM)to identify the most relevant,influential features.Moreover,The ICMPv6-DDoS dataset was used to demonstrate the effectiveness of the proposed method through different attack scenarios.The results show that the proposed method BFPAFA achieved the best accuracy rate(97.96%)for the ICMPv6 DDoS detection with a reduced number of features(9)to half the total(19)features.The proven proposed method BFPA-FAis effective in the ICMPv6 DDoS attacks via IDS. 展开更多
关键词 IPv6 ICMPV6 DDoS feature selection flower pollination algorithm anomaly detection
在线阅读 下载PDF
Visual tracking using discriminative representation with l2 regularization
4
作者 Haijun WANG Hongjuan GE 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第1期199-211,共13页
In this paper,we propose a novel visual tracking method using a discriminative representation under a Bayesian framework.First,we exploit the histogram of gradient (HOG)to generate the texture features of the target t... In this paper,we propose a novel visual tracking method using a discriminative representation under a Bayesian framework.First,we exploit the histogram of gradient (HOG)to generate the texture features of the target templates and candidates.Second,we introduce a novel discriminative representation and l2-regularized least squares method to solve the proposed representation model.The proposed model has a closed-form solution and very high computational efficiency.Third,a novel likelihood function and an update scheme considering the occlusion factor are adopted to improve the tracking performance of our proposed method. Both qualitative and quantitative evaluations on 15 challenging video sequences demonstrate that our method can achieve more robust tracking results in terms of the overlap rate and center location error. 展开更多
关键词 visual tracking discriminative REPRESENTATION BAYESIAN framework closed-form solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部