Smart farming has become a strategic approach of sustainable agriculture management and monitoring with the infrastructure to exploit modern technologies,including big data,the cloud,and the Internet of Things(IoT).Ma...Smart farming has become a strategic approach of sustainable agriculture management and monitoring with the infrastructure to exploit modern technologies,including big data,the cloud,and the Internet of Things(IoT).Many researchers try to integrate IoT-based smart farming on cloud platforms effectively.They define various frameworks on smart farming and monitoring system and still lacks to define effective data management schemes.Since IoT-cloud systems involve massive structured and unstructured data,data optimization comes into the picture.Hence,this research designs an Information-Centric IoT-based Smart Farming with Dynamic Data Optimization(ICISF-DDO),which enhances the performance of the smart farming infrastructure with minimal energy consumption and improved lifetime.Here,a conceptual framework of the proposed scheme and statistical design model has beenwell defined.The information storage and management with DDO has been expanded individually to show the effective use of membership parameters in data optimization.The simulation outcomes state that the proposed ICISF-DDO can surpass existing smart farming systems with a data optimization ratio of 97.71%,reliability ratio of 98.63%,a coverage ratio of 99.67%,least sensor error rate of 8.96%,and efficient energy consumption ratio of 4.84%.展开更多
Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remain...Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.展开更多
文摘Smart farming has become a strategic approach of sustainable agriculture management and monitoring with the infrastructure to exploit modern technologies,including big data,the cloud,and the Internet of Things(IoT).Many researchers try to integrate IoT-based smart farming on cloud platforms effectively.They define various frameworks on smart farming and monitoring system and still lacks to define effective data management schemes.Since IoT-cloud systems involve massive structured and unstructured data,data optimization comes into the picture.Hence,this research designs an Information-Centric IoT-based Smart Farming with Dynamic Data Optimization(ICISF-DDO),which enhances the performance of the smart farming infrastructure with minimal energy consumption and improved lifetime.Here,a conceptual framework of the proposed scheme and statistical design model has beenwell defined.The information storage and management with DDO has been expanded individually to show the effective use of membership parameters in data optimization.The simulation outcomes state that the proposed ICISF-DDO can surpass existing smart farming systems with a data optimization ratio of 97.71%,reliability ratio of 98.63%,a coverage ratio of 99.67%,least sensor error rate of 8.96%,and efficient energy consumption ratio of 4.84%.
基金This study is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.013-0001.
文摘Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem.