The intricate grinding process exposes various cleavage surfaces of mineral particles.This paper systematically investigates the structural characteristics of exposed malachite crystal surfaces and the adsorption beha...The intricate grinding process exposes various cleavage surfaces of mineral particles.This paper systematically investigates the structural characteristics of exposed malachite crystal surfaces and the adsorption behavior and mechanism of hydroxamic acid and water molecules using first-principle density functional theory.The study reveals anisotropic surface energies among crystal surfaces,ranked as(201)>(100)>(110)>(001)>(010)>(201).The adsorption of hydroxamic acid and water molecules on malachite surfaces also exhibited anisotropy.The difference in adsorption strength between hydroxamic acid and water molecules on the six exposed surfaces followed the order of(110)>(100)>(010)>(001)>(201)>(201),and the resistance of water molecules to the adsorption of hydroxamic acid on the six exposed surfaces was(110)>(201)>(010)>(201)>(001)>(100).It indicates that the reagent exhibits a strong competitive advantage in adsorption on the(100)surface,and the hindrance of water molecules to reagent adsorption is relatively small,which is favorable for flotation.This study provides theoretical references and innovative insights for the precise design of flotation reagents,as well as for the meticulous optimization of mineral surface interfaces,with the objective of enhancing flotation separation.展开更多
Logistics information construction in colleges and universities is an important part of smart campus. This paper expounds the current situation and existing problems of the logistics information construction in colleg...Logistics information construction in colleges and universities is an important part of smart campus. This paper expounds the current situation and existing problems of the logistics information construction in colleges and universities. Taking China University of Geosciences (Beijing) as an example, this paper discusses the construction principles and Personnel organization structure of the logistics information construction, and provides the construction scheme of the logistics information service platform. It can be used for reference for the implementation of logistics information construction in other colleges and universities.展开更多
In the present work,a new Mg-Bi based alloy is developed by the addition of Zn and Ca in equiva-lent atom fraction with Bi.Mg-Bi and Mg-Bi-Zn-Ca alloys were prepared by extrusion at a ram speed of 20 mm/s.Room tempera...In the present work,a new Mg-Bi based alloy is developed by the addition of Zn and Ca in equiva-lent atom fraction with Bi.Mg-Bi and Mg-Bi-Zn-Ca alloys were prepared by extrusion at a ram speed of 20 mm/s.Room temperature mechanical properties and creep behaviors at 423 K were investigated.The results show that Zn and Ca co-addition shows little influence on average grain size and texture in-tensity but changes the dispersive Mg_(3)Bi_(2)into Mg_(2)Bi_(2)Ca particles in different sizes and a lower density.Twinning is largely activated during room-temperature deformation.Consequently,a slightly decreased proof strength but tripled elongation is shown at room temperature.Unexpectedly,large enhancement in creep resistance is detected after the co-alloying of Zn and Ca and the minimum creep rate is reduced by 10 to 20 times in the BZX621 alloy.Stress exponent n=4-5 indicates that the creep is a dislocation-climb controlled type.Post-mortem characterization on microstructure shows slip of dislocationc+aare also largely found in B6 as well as BZX621 alloy and cross-slip is detected more severe in B6 alloy.Dynamic segregation and precipitation are also seen in both alloys.Bi-clusters are seen dispersive across the grains in B6 and so did the PFZs that could undermine creep resistance at the grain boundaries.By contrast,Zn-rich needle-like precipitates are developed at most“ends”ofc+adislocations,which would hinder the further dislocation motions and thus improve the creep resistance.First-principles cal-culations were adopted and the results show that the thermal stability and thermomechanical properties of Mg_(2)Bi_(2)Ca are much better than that of Mg_(3)Bi_(2).Stacking faults energy is lowered down with the co-addition of Ca and Zn,which could inhibit the rate of dislocation climb and cross-slip.As a result,the im-proved creep resistance is obtained in the Mg-Bi-Zn-Ca alloys.Microstructural and controlling mechanism changes by thermal activation result in the unexpected enhancement in creep resistance with decreased room-temperature proof strength after co-addition.These findings could contribute to the development and optimization of creep-resistant Mg alloys in the future.展开更多
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo...Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.展开更多
The pollution of particulate matter less than 2.5μm (PM2.5) is a serious environmental problem in Beijing. The annual average concentration of PM2.5 in 2001 from seasonal monitor results was more than 6 times that ...The pollution of particulate matter less than 2.5μm (PM2.5) is a serious environmental problem in Beijing. The annual average concentration of PM2.5 in 2001 from seasonal monitor results was more than 6 times that of the U,S, national ambient air quality standards proposed by U.S. EPA. The major contributors to mass of PM2.5 were organics, crustal elements and sulfate. The chemical composition of PM2.5 varied largely with season, but was similar at different monitor stations in the same season. The fine particles (PM2.5) cause atmospheric visibility deterioration through light extinction, The mass concentrations of PM2.5 were anti-correlated to the visibility, the best fits between atmospheric visibility and the mass concentrations of PM2.5 were somehow different: power in spring, exponential in summer, logarithmic in autumn, power or exponential in winter. As in each season the meteorological parameters such as air temperature and relative humidity change from day to day, probably the reason of above correlations between PM2.5 and visibility obtained at different seasons come from the differences in chemical compositions of PM2.5.展开更多
Based on the satellite data from the Climate Prediction Center morphing(CMORPH) at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta(PRD) ...Based on the satellite data from the Climate Prediction Center morphing(CMORPH) at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta(PRD) metropolitan regions of China. CMORPH data well estimates the precipitation features over the PRD. Compared to the surrounding rural areas, the PRD urban areas experience fewer and shorter precipitation events with a lower precipitation frequency(ratio of rainy hours, about 3 days per year less); however, short-duration heavy rain events play a more significant role over the PRD urban areas. Afternoon precipitation is much more pronounced over the PRD urban areas than the surrounding rural areas, which is probably because of the increase in short-duration heavy rain over urban areas.展开更多
The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc ...The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc doped inθ′slab(S2 site))were modeled based on calculated results and reported experiments.Through the analysis of interfacial bonding strength,it is revealed that the doping of Sc at S1 site can significantly decrease the interface energy and increase the work of adhesion.In particular,the doped coherent interface with Sc at S1 site which is occupied by interstitial Cu atoms has very good bonding strength.The electronic structure shows the strong Al—Cu bonds at the interfaces with Sc at S1 site,and the Al—Al bonds at the interfaces with Sc at S2 site are formed.The formation of strong Al—Cu and Al—Al bonds plays an important role in the enhancement of doped interface strength.展开更多
Earthquake detection and location are essential in earthquake studies,which generally consists of two main classes:waveform-based and pick-based methods.To evaluate the ability of two different methods,a graphicsproce...Earthquake detection and location are essential in earthquake studies,which generally consists of two main classes:waveform-based and pick-based methods.To evaluate the ability of two different methods,a graphicsprocessing-unit-based Match&Locate(GPU-M&L)method and a rapid earthquake association and location(REAL)method are applied to continuous seismic data recorded by 24 digital seismic stations from Jiangsu Seismic Network during 2013 for comparison.GPU-M&L is one of waveform-based methods by waveform cross-correlations while REAL is one of pick-based method to associate arrivals of different seismic phases and locate events through counting the number of P and S picks and travel time residuals.Twenty-six templates are selected from the Jiangsu Seismic Network local catalog by using the GPU-M&L.The number of newly detected and located events is about 2.8 times more than those listed in the local catalog.We both utilize a deep-neural-network-based arrival-time picking method called PhaseNet and a shortterm/long-term average(STA/LTA)trigger algorithm for seismic phase detection and picking by applying the REAL.We then refine seismic locations using a least-squares location method(VELEST)and a high-precision relative location method(hypoDD).By applying STA/LTA and PhaseNet,1006 and 1893 events are associated and located,respectively.The newly detected events are mainly clustered and show steeply dipping fault planes.By analyzing the performance of these methods based on long-term continuous seismic data,the detected catalogs by the GPU-M&L and REAL show that the magnitudes of completeness are 1.4 and 0.8,respectively,which are smaller than 2.6 given by the local catalog.Although REAL provides improvement compared with GPU-M&L,REAL is highly dependent on phase detection and picking which is strongly affected by signal-noise ratio(SNR).Stations at southeast of the study region with low SNR may lead to few detections in the same area.展开更多
As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy....As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency.展开更多
On July 20,2012,the Ms 4.9 Baoying Earthquake occurred near the junction of Baoying County and Gaoyou City in Jiangsu Province,eastern China.Due to no obvious surface rupture and limited observation of earthquake sequ...On July 20,2012,the Ms 4.9 Baoying Earthquake occurred near the junction of Baoying County and Gaoyou City in Jiangsu Province,eastern China.Due to no obvious surface rupture and limited observation of earthquake sequence,the seismogenic structure of the Ms 4.9 Baoying Earthquake is still unclear.In this study,80 earthquakes provided by China Earthquake Network Center(CENC)are first relocated;and then the relocated 75 events with high signal-to-noise ratios as templates are utilized to scan through continuous waveform data(July 11 to August 31,2012)using graphics processing unit-based match and locate(GPU-M&L)technique.Then the Deep Denoiser,a deeplearning-based noise reduction technique,is used to further confirm some newly detected events;and the double-difference relocation(Hypo DD)algorithm is used to relocate the earthquakes.We detect and relocate more than twice as many events as the CENC routine catalog,which includes 15 foreshocks and 230 aftershocks.The results show that the foreshocks are mainly distributed in the NW direction along the extended SE section of the blind Xiagonghe fault(XF),which is orthogonal to the strike of the seismogenic fault of the Ms 4.9 Baoying Earthquake(Yangchacang-Sangshutou fault,named YSF).Most of the aftershocks are generally distributed along the NNE-trending YSF and illuminate a steeply dipping plane.This study reveals detailed spatiotemporal evolution of the earthquake sequence and suggests that the buried XF extends southeastward and cuts through the NNE-trending seismogenic YSF.展开更多
The paper proposed the research and implement of text similarity system based on power spectrum analysis. It is not difficult to imagine that the signals of brain are closely linked with writing process. So we build t...The paper proposed the research and implement of text similarity system based on power spectrum analysis. It is not difficult to imagine that the signals of brain are closely linked with writing process. So we build text modeling and set pulse signal function to get the power spectrum of the text. The specific detail is getting power spectrum from economic field to build spectral library, and then using the method of power spectrum matching algorithm to judge whether the test text belonged to the economic field. The method made text similarity system finish the function of text intelligent classification efficiently and accurately.展开更多
Standards and specifications are the premise of integrated reorganization of science specimen data, and data integration is the core of the reorganization. ETL [1] which is the abbreviation of extract, transform, and ...Standards and specifications are the premise of integrated reorganization of science specimen data, and data integration is the core of the reorganization. ETL [1] which is the abbreviation of extract, transform, and load [2], is very suitable for data integration. Kettle is a kind of ETL software. In this paper, it has been introduced into the integrated reorganization of science specimen data. Multi-source and heterogeneous specimen data are integrated using kettle, and good results have been achieved. It proved the effectiveness of kettle in the integrated reorganization of science specimen data. The application has practical significance, and the method can be referenced when reorganizing other resource data.展开更多
Database security protection, database backup and disaster recovery are important tasks for all colleges and universities to ensure the safe and stable operation of information systems. Based on the operating environm...Database security protection, database backup and disaster recovery are important tasks for all colleges and universities to ensure the safe and stable operation of information systems. Based on the operating environment of the Oracle production database in China University of Geosciences (Beijing), combined with the practical operation and maintenance experience, this paper provides a design and implementation case of Oracle database security protection system and disaster recovery architecture. The network security protection architecture of the three-layer firewall and fortress machine, the detection and repair of security vulnerabilities, the management of system accounts and permissions, data encryption and database audit constitute the security protection system of the database. Oracle RAC (Real Application Clusters), Oracle DataGuard, redundant backup management and backup recovery constitute the disaster recovery architecture of the database. The case has practical significance for database operation and maintenance management in other colleges and universities.展开更多
Digital transformation of education is an important strategic content of information construction in Chinese universities in recent years. Postgraduate education is characterized by many types of postgraduates, comple...Digital transformation of education is an important strategic content of information construction in Chinese universities in recent years. Postgraduate education is characterized by many types of postgraduates, complex training links, long training process, and obvious individuation. Its information construction and digital transformation are the difficulties in the construction of smart campus in colleges and universities. This paper discusses the current situation and main problems of postgraduate education informatization in colleges and universities, and puts forward the key points and suggestions of digital transformation of postgraduate education in colleges and universities from the aspects of optimizing the information platform of postgraduate education management and service, driving the modernization and wisdom of postgraduate education with data, constructing the integrated platform of intelligent teaching, and continuously improving the digital literacy of teachers and students.展开更多
Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is ...Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is to analyze the influence of atmospheric inhomogeneities for wind measurement. Five-beam WPR can measure two groups of horizontal wind components U and V independently, using the difference of horizontal wind components U and V can evaluate the influence of the inhomogeneity of the atmospheric motion on wind measurement. The influences can be divided into both inhomogeneous distribution of horizontal motion and vertical motion. Based on wind measurements and meteorological background information, a new means of coordinate rotation the two kinds of inhomogeneous factor was separated, and the impact in different weather background was discussed. From analysis of the wind measured by type of PB-II WPR(445MHz) during 2012 at Yanqing of Beijing, it is shown that the inhomogeneity of horizontal motion is nearly the same in U and V direction. Both the inhomogeneities of horizontal motion and vertical motion have influence on wind measurement, and the degrees of both influences are associated with changes of wind speed. In clear air, inhomogeneity of horizontal motion is the main influence on wind measurement because of small vertical velocity.In precipitation, the two influences are larger than that in clear air.展开更多
Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accura...Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accurately predict heartbeat arrival time. To solve this problem, a novel black-box model is proposed to predict the next heartbeat arrival time. Heartbeat arrival time is modeled as auto-regressive process, heartbeat sending time is modeled as exogenous variable, the model' s coefficients are estimated based on the sliding window of observations and this result is used to predict the next heartbeat arrival time. Simulation shows that this adaptive auto-regressive exogenous (ARX) model can accurately capture heartbeat arrival dynamics and minimize prediction error in different network environments.展开更多
Based on various statistical indices,the abilities of multi-generation reanalyses,namely the NCEP/NCAR Reanalysis 1(R1),the NCEP-DOE Reanalysis 2(R2)and the NCEP Climate Forecast System Reanalysis(CFSR),to reproduce t...Based on various statistical indices,the abilities of multi-generation reanalyses,namely the NCEP/NCAR Reanalysis 1(R1),the NCEP-DOE Reanalysis 2(R2)and the NCEP Climate Forecast System Reanalysis(CFSR),to reproduce the spatiotemporal characteristics of precipitation over Zhejiang Province are comprehensively compared.The mean absolute bias percentages for three reanalyses are 20%(R1),10%(R2)and 37%(CFSR).R2(R1)gives the best(worst)general depiction of the spatial characteristics of the observed precipitation climatology,whereas a significant wet bias is noticed in the CFSR.All reanalyses reasonably reproduce the interannual variability with the correlation coefficients of 0.72(R1),0.72(R2)and 0.84(CFSR).All reanalyses well represent the first two modes of the observed precipitation through Empirical Orthogonal Function analysis,with CFSR giving the best capture of the principal components.The root-mean-square error(RMSE)is the largest(smallest)in the CFSR(R2).The large RMSE of CFSR in summer(especially in June)contributes mostly to its systematic wet bias.After 2001,the wet bias of CFSR substantially weakens,probably attributed to increasing observations assimilated in the CFSR.On a monthly basis,the percentage of neutral bias cases are similar for all reanalyses,while the ratio of positive(negative)bias cases for CFSR is distinctly larger(smaller)than that of R1 and R2.The proportions of negative bias cases for R1 and R2 begin to increase after 2001 while keeping stable for CFSR.On a daily basis,all reanalyses give good performances of reproducing light rain;however,the reflection of moderate rain and heavier rain by the CFSR is better than R1 and R2.Overall,despite being a third-generation reanalysis product,the CRSR does not exhibit comprehensive superiorities over R1 and R2 in all aspects on a regional scale.展开更多
Based on the observation data of the annual number of haze days,rainy days,fog days and gale days,sunshine hours,relative humidity and maximum wind speed at Hangzhou station from 1960 to 2021,the variation characteris...Based on the observation data of the annual number of haze days,rainy days,fog days and gale days,sunshine hours,relative humidity and maximum wind speed at Hangzhou station from 1960 to 2021,the variation characteristics of haze days and meteorological influencing factors were studied by mathematical statistical methods such as Mann-Kendall nonparametric test,sliding T test,wavelet analysis and Pearson correlation two-tailed test.The results show that the annual number of haze days generally showed an upward trend,and the climate tendency rate was 20 d/a;there was a sudden change around 2001,and it changed from stable to rapid growth;the number of haze days was the largest in spring and winter,followed by autumn,while it was the smallest in summer.The annual number of haze days had a strongly significant period of 40 a and a mesoscale variation period of 13 a.The number of haze days was negatively correlated with the number of rainy days,fog days and gale days,sunshine hours,relative humidity and maximum wind speed,which passed the 0.05 significance test.In recent 60 years,the number of rainy days and gale days,relative humidity,and maximum wind speed in Hangzhou have decreased,resulting in the weakening of atmospheric wet deposition capacity and power transmission conditions,which provided favorable meteorological conditions for the increase of haze weather.展开更多
This paper devises a scheme which can discover the state association rules of process object. The scheme aims to dig the hidden close relationships of different links in process object. We adopt a method based on diff...This paper devises a scheme which can discover the state association rules of process object. The scheme aims to dig the hidden close relationships of different links in process object. We adopt a method based on difference and extremum to compute the timing. Clustering is used to classifying the adjusted data, and the next is associating the clusters. Based on the rules of clusters, we produce the rules of links. Association degrees between each two links can be determined. It is easy to get association chains according to the degree. The state association rules that can be obtained in accordance with association rules are the final results. Some industry guidance can be directly summarized from the state association rules, and we can apply the guidance to improve the efficiency of production and operational in allied industries.展开更多
基金Project(52074356)supported by the National Natural Science Foundation of ChinaProject(BGRIMM-KJSKL-2023-06)supported by the Open Foundation of State Key Laboratory of Mineral Processing,China+4 种基金Project(2022RC1183)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(kq2009095)supported by the Changsha Science and Technology Project(Outstanding Innovative Youth Training Program),ChinaProject(2023CXQD002)supported by the Innovation Driven Program of Central South University,ChinaProject(B14034)supported by the National“111”Project,ChinaProject(2024ZZTS0655)supported by the Independent Exploration and Innovation Project for Graduate Students of Central South University,China。
文摘The intricate grinding process exposes various cleavage surfaces of mineral particles.This paper systematically investigates the structural characteristics of exposed malachite crystal surfaces and the adsorption behavior and mechanism of hydroxamic acid and water molecules using first-principle density functional theory.The study reveals anisotropic surface energies among crystal surfaces,ranked as(201)>(100)>(110)>(001)>(010)>(201).The adsorption of hydroxamic acid and water molecules on malachite surfaces also exhibited anisotropy.The difference in adsorption strength between hydroxamic acid and water molecules on the six exposed surfaces followed the order of(110)>(100)>(010)>(001)>(201)>(201),and the resistance of water molecules to the adsorption of hydroxamic acid on the six exposed surfaces was(110)>(201)>(010)>(201)>(001)>(100).It indicates that the reagent exhibits a strong competitive advantage in adsorption on the(100)surface,and the hindrance of water molecules to reagent adsorption is relatively small,which is favorable for flotation.This study provides theoretical references and innovative insights for the precise design of flotation reagents,as well as for the meticulous optimization of mineral surface interfaces,with the objective of enhancing flotation separation.
文摘Logistics information construction in colleges and universities is an important part of smart campus. This paper expounds the current situation and existing problems of the logistics information construction in colleges and universities. Taking China University of Geosciences (Beijing) as an example, this paper discusses the construction principles and Personnel organization structure of the logistics information construction, and provides the construction scheme of the logistics information service platform. It can be used for reference for the implementation of logistics information construction in other colleges and universities.
基金supported by the National Key R&D Program of China(No.2021YFB3701100)the Joint Funds of the National Natural Science Foundation of China(No.U22A20187)+4 种基金the Science and Technology Innovation Program of Hunan Province(Nos.2023RC3268,2021JC0005 and 2020RC4013)the Science Fund of State Key Laboratory of Advanced Design and Manu-facturing Technology for Vehicle(No.32117009)the Projects“Development of lightweight high-performance Mg alloys profiles manufacturing technologies”and“Research and development of room-temperature bendable Mg alloy thin sheets manufactur-ing technology”from QingHai Salt Lake Industry Co.,Ltd.(Nos.2022-Z-0810000000-21-ZC0609-0001 and 2022-Z-08)the“Technology Innovation 2025”Major Special Project of Ningbo CityThe first-principles calculations work was carried out using software provided by the High Performance Computing Center of Central South University.
文摘In the present work,a new Mg-Bi based alloy is developed by the addition of Zn and Ca in equiva-lent atom fraction with Bi.Mg-Bi and Mg-Bi-Zn-Ca alloys were prepared by extrusion at a ram speed of 20 mm/s.Room temperature mechanical properties and creep behaviors at 423 K were investigated.The results show that Zn and Ca co-addition shows little influence on average grain size and texture in-tensity but changes the dispersive Mg_(3)Bi_(2)into Mg_(2)Bi_(2)Ca particles in different sizes and a lower density.Twinning is largely activated during room-temperature deformation.Consequently,a slightly decreased proof strength but tripled elongation is shown at room temperature.Unexpectedly,large enhancement in creep resistance is detected after the co-alloying of Zn and Ca and the minimum creep rate is reduced by 10 to 20 times in the BZX621 alloy.Stress exponent n=4-5 indicates that the creep is a dislocation-climb controlled type.Post-mortem characterization on microstructure shows slip of dislocationc+aare also largely found in B6 as well as BZX621 alloy and cross-slip is detected more severe in B6 alloy.Dynamic segregation and precipitation are also seen in both alloys.Bi-clusters are seen dispersive across the grains in B6 and so did the PFZs that could undermine creep resistance at the grain boundaries.By contrast,Zn-rich needle-like precipitates are developed at most“ends”ofc+adislocations,which would hinder the further dislocation motions and thus improve the creep resistance.First-principles cal-culations were adopted and the results show that the thermal stability and thermomechanical properties of Mg_(2)Bi_(2)Ca are much better than that of Mg_(3)Bi_(2).Stacking faults energy is lowered down with the co-addition of Ca and Zn,which could inhibit the rate of dislocation climb and cross-slip.As a result,the im-proved creep resistance is obtained in the Mg-Bi-Zn-Ca alloys.Microstructural and controlling mechanism changes by thermal activation result in the unexpected enhancement in creep resistance with decreased room-temperature proof strength after co-addition.These findings could contribute to the development and optimization of creep-resistant Mg alloys in the future.
基金supported by the National Natural Science Foundation of China(60573159)
文摘Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.
基金The General Project of the Beijing Municipal Natural Science Foundation (No. 8012009) and the Key Project of the BeijingMunicipal Sciences & Technology Commission (No. H020620190091-H020620250230)
文摘The pollution of particulate matter less than 2.5μm (PM2.5) is a serious environmental problem in Beijing. The annual average concentration of PM2.5 in 2001 from seasonal monitor results was more than 6 times that of the U,S, national ambient air quality standards proposed by U.S. EPA. The major contributors to mass of PM2.5 were organics, crustal elements and sulfate. The chemical composition of PM2.5 varied largely with season, but was similar at different monitor stations in the same season. The fine particles (PM2.5) cause atmospheric visibility deterioration through light extinction, The mass concentrations of PM2.5 were anti-correlated to the visibility, the best fits between atmospheric visibility and the mass concentrations of PM2.5 were somehow different: power in spring, exponential in summer, logarithmic in autumn, power or exponential in winter. As in each season the meteorological parameters such as air temperature and relative humidity change from day to day, probably the reason of above correlations between PM2.5 and visibility obtained at different seasons come from the differences in chemical compositions of PM2.5.
基金supported by the National Natural Science Foundation of China(41375050)
文摘Based on the satellite data from the Climate Prediction Center morphing(CMORPH) at very high spatial and temporal resolution, the effects of urbanization on precipitation were assessed over the Pearl River Delta(PRD) metropolitan regions of China. CMORPH data well estimates the precipitation features over the PRD. Compared to the surrounding rural areas, the PRD urban areas experience fewer and shorter precipitation events with a lower precipitation frequency(ratio of rainy hours, about 3 days per year less); however, short-duration heavy rain events play a more significant role over the PRD urban areas. Afternoon precipitation is much more pronounced over the PRD urban areas than the surrounding rural areas, which is probably because of the increase in short-duration heavy rain over urban areas.
基金the financia supports from the National Key Research and Development Program of China (No. 2019YFB2006500)the National Natura Science Foundation of China (Nos. 52171024 51771234, 51601228)。
文摘The properties of Sc-dopedθ′(Al_(2)Cu)/Al interface in Al−Cu alloys were investigated by first-principles calculations.Sc-doped semi-coherent and coherentθ′(Al_(2)Cu)/Al interfaces(Sc doped in Al slab(S1 site),Sc doped inθ′slab(S2 site))were modeled based on calculated results and reported experiments.Through the analysis of interfacial bonding strength,it is revealed that the doping of Sc at S1 site can significantly decrease the interface energy and increase the work of adhesion.In particular,the doped coherent interface with Sc at S1 site which is occupied by interstitial Cu atoms has very good bonding strength.The electronic structure shows the strong Al—Cu bonds at the interfaces with Sc at S1 site,and the Al—Al bonds at the interfaces with Sc at S2 site are formed.The formation of strong Al—Cu and Al—Al bonds plays an important role in the enhancement of doped interface strength.
基金This research is co-supported by National Key R&D Program of China(No.2017YFC1500402)National Natural Science Foundation of China(Nos.41874063 and U1939203)Shanghai Sheshan National Geophysical Observatory(No.2020K02)。
文摘Earthquake detection and location are essential in earthquake studies,which generally consists of two main classes:waveform-based and pick-based methods.To evaluate the ability of two different methods,a graphicsprocessing-unit-based Match&Locate(GPU-M&L)method and a rapid earthquake association and location(REAL)method are applied to continuous seismic data recorded by 24 digital seismic stations from Jiangsu Seismic Network during 2013 for comparison.GPU-M&L is one of waveform-based methods by waveform cross-correlations while REAL is one of pick-based method to associate arrivals of different seismic phases and locate events through counting the number of P and S picks and travel time residuals.Twenty-six templates are selected from the Jiangsu Seismic Network local catalog by using the GPU-M&L.The number of newly detected and located events is about 2.8 times more than those listed in the local catalog.We both utilize a deep-neural-network-based arrival-time picking method called PhaseNet and a shortterm/long-term average(STA/LTA)trigger algorithm for seismic phase detection and picking by applying the REAL.We then refine seismic locations using a least-squares location method(VELEST)and a high-precision relative location method(hypoDD).By applying STA/LTA and PhaseNet,1006 and 1893 events are associated and located,respectively.The newly detected events are mainly clustered and show steeply dipping fault planes.By analyzing the performance of these methods based on long-term continuous seismic data,the detected catalogs by the GPU-M&L and REAL show that the magnitudes of completeness are 1.4 and 0.8,respectively,which are smaller than 2.6 given by the local catalog.Although REAL provides improvement compared with GPU-M&L,REAL is highly dependent on phase detection and picking which is strongly affected by signal-noise ratio(SNR).Stations at southeast of the study region with low SNR may lead to few detections in the same area.
基金Supported by the National Science and Technology Basic Work Project of China Meteorological Administration(2005DKA31700-06)Innovation Fund of Public Meteorological Service Center of China Meteorological Administration(M2020013)。
文摘As one of the hot topics in the field of new energy,short-term wind power prediction research should pay attention to the impact of meteorological characteristics on wind power while improving the prediction accuracy.Therefore,a short-term wind power prediction method based on the combination of meteorological features and Cat Boost is presented.Firstly,morgan-stone algebras and sure independence screening(MS-SIS)method is designed to filter the meteorological features,and the influence of the meteorological features on the wind power is explored.Then,a sort enhancement algorithm is designed to increase the accuracy and calculation efficiency of the method and reduce the prediction risk of a single element.Finally,a prediction method based on Cat Boost network is constructed to further realize short-term wind power prediction.The National Renewable Energy Laboratory(NREL)dataset is used for experimental analysis.The results show that the short-term wind power prediction method based on the combination of meteorological features and Cat Boost not only improve the prediction accuracy of short-term wind power,but also have higher calculation efficiency.
基金supported by the National Natural Science Foundation of China(No.U1939203)the National Key R&D Program of China(No.2017YFC150040)Shanghai Sheshan National Geophysical Observatory(No.2020K02)。
文摘On July 20,2012,the Ms 4.9 Baoying Earthquake occurred near the junction of Baoying County and Gaoyou City in Jiangsu Province,eastern China.Due to no obvious surface rupture and limited observation of earthquake sequence,the seismogenic structure of the Ms 4.9 Baoying Earthquake is still unclear.In this study,80 earthquakes provided by China Earthquake Network Center(CENC)are first relocated;and then the relocated 75 events with high signal-to-noise ratios as templates are utilized to scan through continuous waveform data(July 11 to August 31,2012)using graphics processing unit-based match and locate(GPU-M&L)technique.Then the Deep Denoiser,a deeplearning-based noise reduction technique,is used to further confirm some newly detected events;and the double-difference relocation(Hypo DD)algorithm is used to relocate the earthquakes.We detect and relocate more than twice as many events as the CENC routine catalog,which includes 15 foreshocks and 230 aftershocks.The results show that the foreshocks are mainly distributed in the NW direction along the extended SE section of the blind Xiagonghe fault(XF),which is orthogonal to the strike of the seismogenic fault of the Ms 4.9 Baoying Earthquake(Yangchacang-Sangshutou fault,named YSF).Most of the aftershocks are generally distributed along the NNE-trending YSF and illuminate a steeply dipping plane.This study reveals detailed spatiotemporal evolution of the earthquake sequence and suggests that the buried XF extends southeastward and cuts through the NNE-trending seismogenic YSF.
文摘The paper proposed the research and implement of text similarity system based on power spectrum analysis. It is not difficult to imagine that the signals of brain are closely linked with writing process. So we build text modeling and set pulse signal function to get the power spectrum of the text. The specific detail is getting power spectrum from economic field to build spectral library, and then using the method of power spectrum matching algorithm to judge whether the test text belonged to the economic field. The method made text similarity system finish the function of text intelligent classification efficiently and accurately.
文摘Standards and specifications are the premise of integrated reorganization of science specimen data, and data integration is the core of the reorganization. ETL [1] which is the abbreviation of extract, transform, and load [2], is very suitable for data integration. Kettle is a kind of ETL software. In this paper, it has been introduced into the integrated reorganization of science specimen data. Multi-source and heterogeneous specimen data are integrated using kettle, and good results have been achieved. It proved the effectiveness of kettle in the integrated reorganization of science specimen data. The application has practical significance, and the method can be referenced when reorganizing other resource data.
文摘Database security protection, database backup and disaster recovery are important tasks for all colleges and universities to ensure the safe and stable operation of information systems. Based on the operating environment of the Oracle production database in China University of Geosciences (Beijing), combined with the practical operation and maintenance experience, this paper provides a design and implementation case of Oracle database security protection system and disaster recovery architecture. The network security protection architecture of the three-layer firewall and fortress machine, the detection and repair of security vulnerabilities, the management of system accounts and permissions, data encryption and database audit constitute the security protection system of the database. Oracle RAC (Real Application Clusters), Oracle DataGuard, redundant backup management and backup recovery constitute the disaster recovery architecture of the database. The case has practical significance for database operation and maintenance management in other colleges and universities.
文摘Digital transformation of education is an important strategic content of information construction in Chinese universities in recent years. Postgraduate education is characterized by many types of postgraduates, complex training links, long training process, and obvious individuation. Its information construction and digital transformation are the difficulties in the construction of smart campus in colleges and universities. This paper discusses the current situation and main problems of postgraduate education informatization in colleges and universities, and puts forward the key points and suggestions of digital transformation of postgraduate education in colleges and universities from the aspects of optimizing the information platform of postgraduate education management and service, driving the modernization and wisdom of postgraduate education with data, constructing the integrated platform of intelligent teaching, and continuously improving the digital literacy of teachers and students.
基金National Natural Science Foundation of China(41475029)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306004)Meteorological Key Technology Integration and Application of the China Meteorological Administration(CMAGJ2013M74)
文摘Horizontal wind measured by wind profiling radar(WPR) is based on uniform wind assumption in volume of lateral beam. However, this assumption cannot completely meet in the real atmosphere. The subject of this work is to analyze the influence of atmospheric inhomogeneities for wind measurement. Five-beam WPR can measure two groups of horizontal wind components U and V independently, using the difference of horizontal wind components U and V can evaluate the influence of the inhomogeneity of the atmospheric motion on wind measurement. The influences can be divided into both inhomogeneous distribution of horizontal motion and vertical motion. Based on wind measurements and meteorological background information, a new means of coordinate rotation the two kinds of inhomogeneous factor was separated, and the impact in different weather background was discussed. From analysis of the wind measured by type of PB-II WPR(445MHz) during 2012 at Yanqing of Beijing, it is shown that the inhomogeneity of horizontal motion is nearly the same in U and V direction. Both the inhomogeneities of horizontal motion and vertical motion have influence on wind measurement, and the degrees of both influences are associated with changes of wind speed. In clear air, inhomogeneity of horizontal motion is the main influence on wind measurement because of small vertical velocity.In precipitation, the two influences are larger than that in clear air.
基金the National Basic Research Program of China(No.2003CB314806)China Next Generation Intemet Project(CNGI-04-6-2T)
文摘Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accurately predict heartbeat arrival time. To solve this problem, a novel black-box model is proposed to predict the next heartbeat arrival time. Heartbeat arrival time is modeled as auto-regressive process, heartbeat sending time is modeled as exogenous variable, the model' s coefficients are estimated based on the sliding window of observations and this result is used to predict the next heartbeat arrival time. Simulation shows that this adaptive auto-regressive exogenous (ARX) model can accurately capture heartbeat arrival dynamics and minimize prediction error in different network environments.
基金Zhejiang Province Basic Public Welfare Program(LGF19D050001)Key R&D Program of Zhejiang Province(2021C02036)+2 种基金China Meteorological Administration Special Fund for Forecasters(CMAYBY2019-048)National Key R&D Program of China(2018YFC1505601)Key Program of Zhejiang Meteorological Bureau(2020ZD14)。
文摘Based on various statistical indices,the abilities of multi-generation reanalyses,namely the NCEP/NCAR Reanalysis 1(R1),the NCEP-DOE Reanalysis 2(R2)and the NCEP Climate Forecast System Reanalysis(CFSR),to reproduce the spatiotemporal characteristics of precipitation over Zhejiang Province are comprehensively compared.The mean absolute bias percentages for three reanalyses are 20%(R1),10%(R2)and 37%(CFSR).R2(R1)gives the best(worst)general depiction of the spatial characteristics of the observed precipitation climatology,whereas a significant wet bias is noticed in the CFSR.All reanalyses reasonably reproduce the interannual variability with the correlation coefficients of 0.72(R1),0.72(R2)and 0.84(CFSR).All reanalyses well represent the first two modes of the observed precipitation through Empirical Orthogonal Function analysis,with CFSR giving the best capture of the principal components.The root-mean-square error(RMSE)is the largest(smallest)in the CFSR(R2).The large RMSE of CFSR in summer(especially in June)contributes mostly to its systematic wet bias.After 2001,the wet bias of CFSR substantially weakens,probably attributed to increasing observations assimilated in the CFSR.On a monthly basis,the percentage of neutral bias cases are similar for all reanalyses,while the ratio of positive(negative)bias cases for CFSR is distinctly larger(smaller)than that of R1 and R2.The proportions of negative bias cases for R1 and R2 begin to increase after 2001 while keeping stable for CFSR.On a daily basis,all reanalyses give good performances of reproducing light rain;however,the reflection of moderate rain and heavier rain by the CFSR is better than R1 and R2.Overall,despite being a third-generation reanalysis product,the CRSR does not exhibit comprehensive superiorities over R1 and R2 in all aspects on a regional scale.
基金Supported the Key Project of Zhejiang Meteorological Bureau(2019ZD14).
文摘Based on the observation data of the annual number of haze days,rainy days,fog days and gale days,sunshine hours,relative humidity and maximum wind speed at Hangzhou station from 1960 to 2021,the variation characteristics of haze days and meteorological influencing factors were studied by mathematical statistical methods such as Mann-Kendall nonparametric test,sliding T test,wavelet analysis and Pearson correlation two-tailed test.The results show that the annual number of haze days generally showed an upward trend,and the climate tendency rate was 20 d/a;there was a sudden change around 2001,and it changed from stable to rapid growth;the number of haze days was the largest in spring and winter,followed by autumn,while it was the smallest in summer.The annual number of haze days had a strongly significant period of 40 a and a mesoscale variation period of 13 a.The number of haze days was negatively correlated with the number of rainy days,fog days and gale days,sunshine hours,relative humidity and maximum wind speed,which passed the 0.05 significance test.In recent 60 years,the number of rainy days and gale days,relative humidity,and maximum wind speed in Hangzhou have decreased,resulting in the weakening of atmospheric wet deposition capacity and power transmission conditions,which provided favorable meteorological conditions for the increase of haze weather.
文摘This paper devises a scheme which can discover the state association rules of process object. The scheme aims to dig the hidden close relationships of different links in process object. We adopt a method based on difference and extremum to compute the timing. Clustering is used to classifying the adjusted data, and the next is associating the clusters. Based on the rules of clusters, we produce the rules of links. Association degrees between each two links can be determined. It is easy to get association chains according to the degree. The state association rules that can be obtained in accordance with association rules are the final results. Some industry guidance can be directly summarized from the state association rules, and we can apply the guidance to improve the efficiency of production and operational in allied industries.