The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CN...The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following nonrigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically sig- nificant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%;p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non-rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process.展开更多
Magnetotactic bacteria(MTB),ubiquitous in soil and fresh and saltwater sources have been identified in the microbiome of humans and many animals.MTB endogenously produce magnetic nanocrystals enabling them to orient a...Magnetotactic bacteria(MTB),ubiquitous in soil and fresh and saltwater sources have been identified in the microbiome of humans and many animals.MTB endogenously produce magnetic nanocrystals enabling them to orient and navigate along geomagnetic fields.Similar magnetite deposits have been found throughout the tissues of the human brain,including brain regions associated with orientation such as the cerebellum and hippocampus,the origins of which remain unknown.Speculation over the role and source of MTB in humans,as well as any association with the brain,remain unanswered.We performed a metagenomic analysis of the gut microbiome of 34 healthy females as well as grey matter volume analysis in magnetite-rich brain regions associated with orientation and navigation with the goal of identifying specific MTB that could be associated with brain structure in orientation and navigation regions.We identified seven MTB in the human gut microbiome:Magnetococcus marinus,Magnetospira sp.QH-2,Magnetospirillum magneticum,Magnetospirillum sp.ME-1,Magnetospirillum sp.XM-1,Magnetospirillum gryphiswaldense,and Desulfovibrio magneticus.Our preliminary results show significant negative associations between multiple MTB with bilateral flocculonodular lobes of the cerebellum and hippocampus(adjusted for total intracranial volume,uncorrected P<0.05).These findings indicate that MTB in the gut are associated with grey matter volume in magnetite-rich brain regions related to orientation and navigation.These preliminary findings support MTB as a potential biogenic source for brain magnetite in humans.Further studies will be necessary to validate and elucidate the relationship between these bacteria,magnetite concentrations,and brain function.展开更多
Q-space trajectory imaging(QTI)allows non-invasive estimation of microstructural features of heterogeneous porous media via diffusion magnetic resonance imaging performed with generalised gradient waveforms.A recently...Q-space trajectory imaging(QTI)allows non-invasive estimation of microstructural features of heterogeneous porous media via diffusion magnetic resonance imaging performed with generalised gradient waveforms.A recently proposed constrained estimation framework,called QTI+,improved QTI's resilience to noise and data sparsity,thus increasing the reliability of the method by enforcing relevant positivity constraints.In this work we consider expanding the set of constraints to be applied during the fitting of the QTI model.We show that the additional conditions,which introduce an upper bound on the diffusivity values,further improve the retrieved parameters on a publicly available human brain dataset as well as on data acquired from healthy volunteers using a scanner-ready protocol.展开更多
Water exchange between the different compartments of a heterogeneous specimen can be characterized via diffusion magnetic resonance imaging(dMRI).Many analysis frameworks using dMRI data have been proposed to describe...Water exchange between the different compartments of a heterogeneous specimen can be characterized via diffusion magnetic resonance imaging(dMRI).Many analysis frameworks using dMRI data have been proposed to describe exchange,often using a double diffusion encoding(DDE)stimulated echo sequence.Techniques such as diffusion exchange weighted imaging(DEWI)and the filter exchange and rapid exchange models,use a specific subset of the full space DDE signal.In this work,a general representation of the DDE signal was employed with different sampling schemes(namely constant b1,diagonal and anti-diagonal)from the data reduction models to estimate exchange.A near-uniform sampling scheme was proposed and compared with the other sampling schemes.The filter exchange and rapid exchange models were also applied to estimate exchange with their own subsampling schemes.These subsampling schemes and models were compared on both simulated data and experimental data acquired with a benchtop MR scanner.In synthetic data,the diagonal and near-uniform sampling schemes performed the best due to the consistency of their estimates with the ground truth.In experimental data,the shifted diagonal and near-uniform sampling schemes outperformed the others,yielding the most consistent estimates with the full space estimation.The results suggest the feasibility of measuring exchange using a general representation of the DDE signal along with variable sampling schemes.In future studies,algorithms could be further developed for the optimization of sampling schemes,as well as incorporating additional properties,such as geometry and diffusion anisotropy,into exchange frameworks.展开更多
Irritable bowel syndrome(IBS)is a common clinical label for medically unexplained gastrointestinal symptoms,recently described as a disturbance of the microbiota-gut-brain axis.Despite decades of research,the pathophy...Irritable bowel syndrome(IBS)is a common clinical label for medically unexplained gastrointestinal symptoms,recently described as a disturbance of the microbiota-gut-brain axis.Despite decades of research,the pathophysiology of this highly heterogeneous disorder remains elusive.However,a dramatic change in the understanding of the underlying pathophysiological mechanisms surfaced when the importance of gut microbiota protruded the scientific picture.Are we getting any closer to understanding IBS’etiology,or are we drowning in unspecific,conflicting data because we possess limited tools to unravel the cluster of secrets our gut microbiota is concealing?In this comprehensive review we are discussing some of the major important features of IBS and their interaction with gut microbiota,clinical microbiota-altering treatment such as the low FODMAP diet and fecal microbiota transplantation,neuroimaging and methods in microbiota analyses,and current and future challenges with big data analysis in IBS.展开更多
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for...There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.展开更多
文摘The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following nonrigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically sig- nificant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%;p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non-rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process.
基金supported by the US National Science Foundation(No.EAR-1423939)。
文摘Magnetotactic bacteria(MTB),ubiquitous in soil and fresh and saltwater sources have been identified in the microbiome of humans and many animals.MTB endogenously produce magnetic nanocrystals enabling them to orient and navigate along geomagnetic fields.Similar magnetite deposits have been found throughout the tissues of the human brain,including brain regions associated with orientation such as the cerebellum and hippocampus,the origins of which remain unknown.Speculation over the role and source of MTB in humans,as well as any association with the brain,remain unanswered.We performed a metagenomic analysis of the gut microbiome of 34 healthy females as well as grey matter volume analysis in magnetite-rich brain regions associated with orientation and navigation with the goal of identifying specific MTB that could be associated with brain structure in orientation and navigation regions.We identified seven MTB in the human gut microbiome:Magnetococcus marinus,Magnetospira sp.QH-2,Magnetospirillum magneticum,Magnetospirillum sp.ME-1,Magnetospirillum sp.XM-1,Magnetospirillum gryphiswaldense,and Desulfovibrio magneticus.Our preliminary results show significant negative associations between multiple MTB with bilateral flocculonodular lobes of the cerebellum and hippocampus(adjusted for total intracranial volume,uncorrected P<0.05).These findings indicate that MTB in the gut are associated with grey matter volume in magnetite-rich brain regions related to orientation and navigation.These preliminary findings support MTB as a potential biogenic source for brain magnetite in humans.Further studies will be necessary to validate and elucidate the relationship between these bacteria,magnetite concentrations,and brain function.
基金funded by Sweden's Innovation Agency(VINNOVA)ASSIST,Analytic Imaging Diagnostic Arena(AIDA),Swedish Foundation for Strategic Research(RMX18-0056)Linkoping University Center for Industrial Information Technology(CENIIT),LiU Cancer Barncancerfonden,and a research grant(00028384)from VILLUM FONDEN。
文摘Q-space trajectory imaging(QTI)allows non-invasive estimation of microstructural features of heterogeneous porous media via diffusion magnetic resonance imaging performed with generalised gradient waveforms.A recently proposed constrained estimation framework,called QTI+,improved QTI's resilience to noise and data sparsity,thus increasing the reliability of the method by enforcing relevant positivity constraints.In this work we consider expanding the set of constraints to be applied during the fitting of the QTI model.We show that the additional conditions,which introduce an upper bound on the diffusivity values,further improve the retrieved parameters on a publicly available human brain dataset as well as on data acquired from healthy volunteers using a scanner-ready protocol.
基金the Swedish Foundation for International Cooperation in Research and Higher Education(STINT),and the Swedish Research Council(Dnr 2022e04715).
文摘Water exchange between the different compartments of a heterogeneous specimen can be characterized via diffusion magnetic resonance imaging(dMRI).Many analysis frameworks using dMRI data have been proposed to describe exchange,often using a double diffusion encoding(DDE)stimulated echo sequence.Techniques such as diffusion exchange weighted imaging(DEWI)and the filter exchange and rapid exchange models,use a specific subset of the full space DDE signal.In this work,a general representation of the DDE signal was employed with different sampling schemes(namely constant b1,diagonal and anti-diagonal)from the data reduction models to estimate exchange.A near-uniform sampling scheme was proposed and compared with the other sampling schemes.The filter exchange and rapid exchange models were also applied to estimate exchange with their own subsampling schemes.These subsampling schemes and models were compared on both simulated data and experimental data acquired with a benchtop MR scanner.In synthetic data,the diagonal and near-uniform sampling schemes performed the best due to the consistency of their estimates with the ground truth.In experimental data,the shifted diagonal and near-uniform sampling schemes outperformed the others,yielding the most consistent estimates with the full space estimation.The results suggest the feasibility of measuring exchange using a general representation of the DDE signal along with variable sampling schemes.In future studies,algorithms could be further developed for the optimization of sampling schemes,as well as incorporating additional properties,such as geometry and diffusion anisotropy,into exchange frameworks.
基金Supported by the Spanish Ministry of Science and Innovation(MICINN,Spain),No.AGL2017-88801-P(to Sanz Y)the Miguel Server grant from the Spanish"Carlos III"Health Institute(ISCIII),No.CP19/00132(to Benitez-Paez A)+2 种基金The Norwegian Research Council(Funding Postdoc Position for Bharath Halandur Nagaraja),No.FRIMEDBIO276010and Helse Vest’s Research Funding,No.HV912243and ERC H2020-MSCA-IF-2019,No.895219(to Haleem N).
文摘Irritable bowel syndrome(IBS)is a common clinical label for medically unexplained gastrointestinal symptoms,recently described as a disturbance of the microbiota-gut-brain axis.Despite decades of research,the pathophysiology of this highly heterogeneous disorder remains elusive.However,a dramatic change in the understanding of the underlying pathophysiological mechanisms surfaced when the importance of gut microbiota protruded the scientific picture.Are we getting any closer to understanding IBS’etiology,or are we drowning in unspecific,conflicting data because we possess limited tools to unravel the cluster of secrets our gut microbiota is concealing?In this comprehensive review we are discussing some of the major important features of IBS and their interaction with gut microbiota,clinical microbiota-altering treatment such as the low FODMAP diet and fecal microbiota transplantation,neuroimaging and methods in microbiota analyses,and current and future challenges with big data analysis in IBS.
文摘There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.