The sodium superionic conductor(NASICON)-type cathode,Na_(3)V_(2)(PO_(4))_(3)(NVP),is considered as a promising cathode material for sodium-ion batteries(SIBs),which offers stable sodium storage capability.However,haz...The sodium superionic conductor(NASICON)-type cathode,Na_(3)V_(2)(PO_(4))_(3)(NVP),is considered as a promising cathode material for sodium-ion batteries(SIBs),which offers stable sodium storage capability.However,hazardous and expensive vanadium(V)has limited its practical application.To reduce the V dependency in NASICON-type cathodes,two new NASICON-structured materials,Na_(3)VMg_(0.5)Ti_(0.5)(PO_(4))_(3)(N_(3.0)VMTP/C)and Na_(3.5)V_(0.5)MgTi_(0.5)(PO_(4))_(3)(N_(3.5)VMTP/C),were designed for cost-effectiveness as well as improvement of battery performance.N_(3.0)VMTP/C and N_(3.5)VMTP/C provided a sodium storage capacity of 155.84 mAh g^(−1)and 105 mAh g^(−1)at 12 mA g^(−1)with 88%and 84%capacity retention after 500 cycles at 150 mA g^(−1),respectively.In-situ XRD analysis revealed that both cathodes undergo a progressive solid solution reaction in the lower voltage region and two-phase reaction at higher voltages during(de)sodiation,with only minor difference in the degree of lattice displacement,confirming their high potential for the SIBs with sustainable and cheaper Mg for grid-scale utilization.展开更多
The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithiu...The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS_(2))has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS_(2) as anode for alkaliion batteries(LIBs,SIBs,and PIBs)are summarized.Furthermore,the existing challenges and prospects of the development of FeS_(2)-based anode materials for alkali-ion batteries are presented at last.展开更多
Potassium ion batteries(PIBs)are regarded as one of promising low-cost energy storage technologies.Achieving long cycle life and high energy density has been considered as important tasks for developing high-performan...Potassium ion batteries(PIBs)are regarded as one of promising low-cost energy storage technologies.Achieving long cycle life and high energy density has been considered as important tasks for developing high-performance PIBs.The alloy-based anodes for PIBs have attracted great attentions because of their high theoretical capacity and relatively low operating voltage.In this review,the latest advance in the related alloy-based anodes was overviewed.Specifically,the correlations among the morphology and potassium storage performance,phase transition mechanisms,the formation of solid electrolyte interphases and ionic transport kinetics are critically discussed.It is expected that this review will provide meaningful guidance and possible pathways for the developments of alloy-based anodes for PIBs.展开更多
When incompletely isolated taxa coexist in a patchy environment (e.g. mosaic hybrid zones, host-race complexes), patterns of variation may differ between selected traits/genes and neutral markers. While the genetic ...When incompletely isolated taxa coexist in a patchy environment (e.g. mosaic hybrid zones, host-race complexes), patterns of variation may differ between selected traits/genes and neutral markers. While the genetic structure of selected traits/loci tends to coincide with habitat variables (producing Genetic-Environment Association or GEA), genetic differentiation at neutral loci unlinked to any selected locus rather depends on geographic connectivity at a large scale (e.g. Isolation- By-Distance or IBD), although these loci often display GEA at a small scale. This discrepancy has been repeatedly taken as evi- dence for parallel primary divergence driven by local adaptation. We argue that this interpretation needs to be addressed more thoroughly by considering the alternative hypothesis that speciation was initiated in allopatry and secondary introgression has subsequently erased the signal of past differentiation at neutral loci. We present a model of neutral introgression after secondary contact in a mosaic hybrid zone, which describes how GEAs dissipate with time and how neutral variation self-organizes accord- ing to the environmental and geographic structures. We show that although neutral loci can be affected by environmental selection they are often more affected by history and connectivity: the neutral structure retains the initial geographic separation more than it correlates with the environment during the colonization and introgression phases, and then converges to a migration-drift balance, the most frequent outcome of which is GEA at a local scale but IBD at a large scale. This is the exact pattern usually attributed to parallel ecological speciation. Introgression is heterogeneous in space and depends on the landscape structure (e.g. it is faster in small patches, which are more impacted by immigration). Furthermore, there is no directionality in the association and it is possi- ble to observe reversed GEAs between distant regions. We argue that the history of differentiation should ideally be reconstructed with selected loci or neutral loci linked to them, not neutral ones, and review some case studies for which the hypothesis of a long co-existence of co-adapted genetic backgrounds might have been refuted too hastily [Current Zoology 59 (1): 72-86, 2013].展开更多
Aqueous zinc-ion batteries(ZIBs)are receiving a continuously increasing attention for mobile devices,especially for the flexible and wearable electronics,due to their non-toxicity,non-flammability,and low-cost feature...Aqueous zinc-ion batteries(ZIBs)are receiving a continuously increasing attention for mobile devices,especially for the flexible and wearable electronics,due to their non-toxicity,non-flammability,and low-cost features.Despite the significant progress in achieving higher capacities for electrode materials of ZIBs,to endow them with high flexibility and economic feasibility is,however,still a significant challenge remaining unsolved.Herein,we present a highly flexible composite film composed of carbon nanotube film and V_(2)O_(5)(CNTF@V_(2)O_(5))with high strength and high conductivity,which is prepared by simply impregnating a porous CNT film with an aqueous V_(2)O_(5)sol under vacuum.For this material,intimate incorporation between V_(2)O_(5)and CNTs has been achieved,successfully integrating the high zinc ion storage capability with high mechanical flexibility.As a result,this CNTF@V_(2)O_(5)film delivers a high capacity of 356.6 m Ah g^(-1)at 0.4 A g^(-1)and excellent cycling stability with 80.1%capacity retention after 500 cycles at 2.0 A g^(-1).The novel strategy and the outstanding battery performance presented in this work should shed light on the development of high-performance and flexible ZIBs.展开更多
Highly fecund marine species with dispersive life-history stages often display large population sizes and wide geographic distribution ranges. Consequently, they are expected to experience reduced genetic drift, effic...Highly fecund marine species with dispersive life-history stages often display large population sizes and wide geographic distribution ranges. Consequently, they are expected to experience reduced genetic drift, efficient selection fueled by frequent adaptive mutations, and high migration loads. This has important consequences for understanding how local adaptation proceeds in the sea. A key issue in this regard, relates to the genetic architecture underlying fitness traits. Theory predicts that adaptation may involve many genes but with a high variance in effect size. Therefore, the effect of selection on allele frequencies may be substantial for the largest effect size loci, but insignificant for small effect genes. In such a context, the performance of population genomic methods to unravel the genetic basis of adaptation depends on the fraction of adaptive genetic variance explained by the cumulative effect of outlier loci. Here, we address some methodological challenges associated with the detection of local adaptation using molecular approaches. We provide an overview of genome scan methods to detect selection, including those assuming complex demographic models that better describe spatial population structure. We then focus on quantitative genetics approaches that search for genotype-phenotype associations at different genomic scales, including genome-wide methods evaluating the cumulative effect of variants. We argue that the limited power of single locus tests can be alleviated by the use of polygenic scores to estimate the joint contribution of candidate variants to phenotypic variation.展开更多
Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical ...Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical application.Therefore,developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic.In this study,Ti_(3)C_(2)Tx/SnO_(2)heterostructures were constructed,which could selectively detect formaldehyde at room temperature with a response value of 29.16%(10×10^(-6)).In addition,the sensor shows a remarkable theoretical detection limit of 5.09×10^(-9)and good longterm stability.Density functional theory(DFT)simulations reveal that SnO_(2)nano spheres provide the majority of adsorption sites that strongly interact with formaldehyde.Meanwhile,Ti_(3)C_(2)T_(x)acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature.Moreover,the formation of p-n heterostructures between SnO_(2)and Ti_(3)C_(2)T_(x)boosts the Schottky barrier at the interface,which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas.This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.展开更多
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein...Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.展开更多
Bismuth-based compounds have been regarded as an important class of visible-light photocatalysts due to their special electronic structures. In this paper, iodide ions are introduced to modify bismuth-based compound,...Bismuth-based compounds have been regarded as an important class of visible-light photocatalysts due to their special electronic structures. In this paper, iodide ions are introduced to modify bismuth-based compound, Bi(24)O(31)Br(10), forming a Bi(24)O(31)Br(10)/BiOI heterojunction structure. A significant enhancement of photocatalytic activity compared to the parent compounds is observed in de-coloration of rhodamine B(Rh.B) solution. The improved photocatalytic property of Bi(24)O(31)Br(10)/BiOI heterojunction is ascribed to the unique electronic structure consisting of complementary band structures of BiOI and Bi(24)O(31)Br(10).Iodide ions are regarded as an effective reagent to construct bismuth-based photocatalytic heterojunctions with improved photocatalytic activity.展开更多
It is generally considered that the hydrogenation of CO2 is the critical bottleneck of the CO2 electroreduction.In this work,with the aid of density functional theory(DFT)calculations,the catalytic hydrogenation of CO...It is generally considered that the hydrogenation of CO2 is the critical bottleneck of the CO2 electroreduction.In this work,with the aid of density functional theory(DFT)calculations,the catalytic hydrogenation of CO2 molecules over Indium-doped SnP3 catalyst were systematically studied.Through doping with indium(In)atom,the energy barrier of CO2 protonation is reduced and OCHO*species could easily be generated.This is mainly due to the p orbital of In exhibits strong hybridization with the p orbital of O,indicating that there is a strong interaction between OCHO*and In-doped SnP3 catalyst.As a result,In-doped SnP3 possesses high-efficiency and high-selectivity for converting CO2 into HCOOH with a low limiting potential of-0.17 V.Our findings will offer theoretical guidance to CO2 electroreduction.展开更多
Oxygen evolution reaction(OER) is admitted to an important half reaction in water splitting for sustainable hydrogen production.The sluggish four-electron process is known to be the bottleneck for enhancing the effici...Oxygen evolution reaction(OER) is admitted to an important half reaction in water splitting for sustainable hydrogen production.The sluggish four-electron process is known to be the bottleneck for enhancing the efficiency of OER.In this regard,tremendous efforts have been devoted to developing effective catalysts for OER.In addition to Ir-or Ru-based oxides taken as the benchmark,transition metal carbides have attracted ever-increasing interest due to the high activity and stability as low-cost OER electrocatalysts.In this review,the transition metal carbides for water oxidation electrocatalysis concerning design strategies and synthesis are briefly summarized.Some typical applications for various carbides are also highlighted.Besides,the development trends and outlook are also discussed.展开更多
The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemica...The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemical NRR presents several practical challenges,including sluggish reaction and low selectivity.Here,bi-atom catalysts have been proposed to achieve excellent activity and high selectivity toward the electrochemical NRR by Ma and his co-workers.It could accelerate the kinetics of N_(2)-to-NH_(3) electrochemical conversion and possess better electrochemical NRR selectivity.This work sheds light on the introduction of bi-atom catalysts to enhance the performance of the electrochemical NRR.展开更多
Objective: To record the human cases of dengue fever(DF) and investigate the Aedes mosquito species circulating during the Hanoi 2011 DF epidemics. Methods: 24 different outbreak points were recorded in 8 districts be...Objective: To record the human cases of dengue fever(DF) and investigate the Aedes mosquito species circulating during the Hanoi 2011 DF epidemics. Methods: 24 different outbreak points were recorded in 8 districts between August and December 2011. Results: 140 patients were hospitalized following dengue diagnostic with a predominance of males(59.3%) and the 15-34 age class. Only DENV-1(11.27%) and DENV-2(88.73%) serotypes were detected in human samples. Mosquito sampling performed in and around patients households revealed the predominance of Aedes aegypti(95.15%) versus Aedes albopictus(4.85%). There is a positive correlation between the population density of Aedes aegypti and the number of human cases and duration of outbreaks. Conclusions: This was not observed for Aedes albopictus. 3 pools of Aedes aegypti were positive with dengue virus, two with DENV-1 and one with DENV-2.展开更多
Fast interfacial kinetics derived from bicontinuous three-dimensional(3D)architecture is a strategic feature for achieving fast-charging lithium-ion batteries(LIBs).One of the main reasons is its large active surface ...Fast interfacial kinetics derived from bicontinuous three-dimensional(3D)architecture is a strategic feature for achieving fast-charging lithium-ion batteries(LIBs).One of the main reasons is its large active surface and short diffusion path.Yet,understanding of unusual electrochemical properties still remain great challenge due to its complexity.In this study,we proposed a nickel–tin compound(Ni_(3)Sn_(4))supported by 3D Nickel scaffolds as main frame because the Ni_(3)Sn_(4) clearly offers a higher reversible capacity and stable cycling performance than bare tin(Sn).In order to verify the role of Ni,atomic-scale simulation based on density functional theory systematically addressed to the reaction mechanism and structural evolution of Ni_(3)Sn_(4) during the lithiation process.Our findings are that Ni enables Ni_(3)Sn_(4) to possess higher mechanical stability in terms of reactive flow stress,subsequently lead to improve Li storage capability.This study elucidates an understanding of the lithiation mechanism of Ni_(3)Sn_(4) and provides a new perspective for the design of high-capacity and high-power 3D anodes for fast-charging LIBs.展开更多
Chaotic genetic patchiness (CGP) refers to surprising patterns of spatial and temporal genetic structure observed in some marine species at a scale where genetic variation should be efficiently homogenized by gene f...Chaotic genetic patchiness (CGP) refers to surprising patterns of spatial and temporal genetic structure observed in some marine species at a scale where genetic variation should be efficiently homogenized by gene flow via larval dispersal. Here we review and discuss 4 mechanisms that could generate such unexpected patterns: selection, sweepstakes reproductive success, collective dispersal, and temporal shifts in local population dynamics. First, we review examples where genetic differentiation at specific loci was driven by diversifying selection, which was historically the first process invoked to explain CGP. Second, we turn to neutral demographic processes that may drive genome-wide effects, and whose effects on CGP may be enhanced when they act together. We discuss how sweepstakes reproductive success accelerates genetic drift and can thus generate genetic structure, provided that gene flow is not too strong. Collective dispersal is another mechanism whereby genetic structure can be maintained regardless of dispersal intensity, because it may prevent larval cohorts from becoming entirely mixed. Theoretical analyses of both the sweepstakes and the collective dispersal ideas are presented. Finally, we discuss an idea that has received less attention than the other ones just mentioned, namely temporal shifts in local population dynamics.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2025-00520759)supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(No.RS-2023-NR077186 and RS-2024-00405185).
文摘The sodium superionic conductor(NASICON)-type cathode,Na_(3)V_(2)(PO_(4))_(3)(NVP),is considered as a promising cathode material for sodium-ion batteries(SIBs),which offers stable sodium storage capability.However,hazardous and expensive vanadium(V)has limited its practical application.To reduce the V dependency in NASICON-type cathodes,two new NASICON-structured materials,Na_(3)VMg_(0.5)Ti_(0.5)(PO_(4))_(3)(N_(3.0)VMTP/C)and Na_(3.5)V_(0.5)MgTi_(0.5)(PO_(4))_(3)(N_(3.5)VMTP/C),were designed for cost-effectiveness as well as improvement of battery performance.N_(3.0)VMTP/C and N_(3.5)VMTP/C provided a sodium storage capacity of 155.84 mAh g^(−1)and 105 mAh g^(−1)at 12 mA g^(−1)with 88%and 84%capacity retention after 500 cycles at 150 mA g^(−1),respectively.In-situ XRD analysis revealed that both cathodes undergo a progressive solid solution reaction in the lower voltage region and two-phase reaction at higher voltages during(de)sodiation,with only minor difference in the degree of lattice displacement,confirming their high potential for the SIBs with sustainable and cheaper Mg for grid-scale utilization.
基金the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘The ever-growing demand for advanced battery technologies with high energy and power density,high security,prolonged cycle life,and sustainably low cost requires the development of novel electrode materials for lithium-ion batteries(LIBs),as well as the alternative electrochemical energy storage technologies of sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)for their abundant alkali metal elements resources.Among various anode materials,such as graphite,organic compounds,metal oxides,and chalcogenides,iron sulfides have attracted substantial interests for their high theoretical capacity and low price.Specifically,as a common mineral that has been already applied as electrode for primary battery,ferrous disulfide(FeS_(2))has been regarded as one of the promising candidate anode materials and studied widely.Unfortunately,there are some inherent problems handicapping its practical application for alkali-ion batteries,including limited ionic/electrical conductivity,the formation of soluble polysulfides,and large volume change.In the last decade,massive efforts have been devoted to solving those problems.In this review,the various synthesis strategies,the effect of morphologies and particle sizes,the energy storage mechanisms,and the electrochemical performances of FeS_(2) as anode for alkaliion batteries(LIBs,SIBs,and PIBs)are summarized.Furthermore,the existing challenges and prospects of the development of FeS_(2)-based anode materials for alkali-ion batteries are presented at last.
基金financially supported by the National Natural Science Foundation of China(Nos.51302079 and 51702138)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘Potassium ion batteries(PIBs)are regarded as one of promising low-cost energy storage technologies.Achieving long cycle life and high energy density has been considered as important tasks for developing high-performance PIBs.The alloy-based anodes for PIBs have attracted great attentions because of their high theoretical capacity and relatively low operating voltage.In this review,the latest advance in the related alloy-based anodes was overviewed.Specifically,the correlations among the morphology and potassium storage performance,phase transition mechanisms,the formation of solid electrolyte interphases and ionic transport kinetics are critically discussed.It is expected that this review will provide meaningful guidance and possible pathways for the developments of alloy-based anodes for PIBs.
文摘When incompletely isolated taxa coexist in a patchy environment (e.g. mosaic hybrid zones, host-race complexes), patterns of variation may differ between selected traits/genes and neutral markers. While the genetic structure of selected traits/loci tends to coincide with habitat variables (producing Genetic-Environment Association or GEA), genetic differentiation at neutral loci unlinked to any selected locus rather depends on geographic connectivity at a large scale (e.g. Isolation- By-Distance or IBD), although these loci often display GEA at a small scale. This discrepancy has been repeatedly taken as evi- dence for parallel primary divergence driven by local adaptation. We argue that this interpretation needs to be addressed more thoroughly by considering the alternative hypothesis that speciation was initiated in allopatry and secondary introgression has subsequently erased the signal of past differentiation at neutral loci. We present a model of neutral introgression after secondary contact in a mosaic hybrid zone, which describes how GEAs dissipate with time and how neutral variation self-organizes accord- ing to the environmental and geographic structures. We show that although neutral loci can be affected by environmental selection they are often more affected by history and connectivity: the neutral structure retains the initial geographic separation more than it correlates with the environment during the colonization and introgression phases, and then converges to a migration-drift balance, the most frequent outcome of which is GEA at a local scale but IBD at a large scale. This is the exact pattern usually attributed to parallel ecological speciation. Introgression is heterogeneous in space and depends on the landscape structure (e.g. it is faster in small patches, which are more impacted by immigration). Furthermore, there is no directionality in the association and it is possi- ble to observe reversed GEAs between distant regions. We argue that the history of differentiation should ideally be reconstructed with selected loci or neutral loci linked to them, not neutral ones, and review some case studies for which the hypothesis of a long co-existence of co-adapted genetic backgrounds might have been refuted too hastily [Current Zoology 59 (1): 72-86, 2013].
基金supported by the National Natural Science Foundation of China(No.51072130,51502045 and 21905202)the Australian Research Council(ARC)through Discovery Project(No.DP200100365)the Discovery Early Career Researcher Award(DECRA,No.DE170100871)program。
文摘Aqueous zinc-ion batteries(ZIBs)are receiving a continuously increasing attention for mobile devices,especially for the flexible and wearable electronics,due to their non-toxicity,non-flammability,and low-cost features.Despite the significant progress in achieving higher capacities for electrode materials of ZIBs,to endow them with high flexibility and economic feasibility is,however,still a significant challenge remaining unsolved.Herein,we present a highly flexible composite film composed of carbon nanotube film and V_(2)O_(5)(CNTF@V_(2)O_(5))with high strength and high conductivity,which is prepared by simply impregnating a porous CNT film with an aqueous V_(2)O_(5)sol under vacuum.For this material,intimate incorporation between V_(2)O_(5)and CNTs has been achieved,successfully integrating the high zinc ion storage capability with high mechanical flexibility.As a result,this CNTF@V_(2)O_(5)film delivers a high capacity of 356.6 m Ah g^(-1)at 0.4 A g^(-1)and excellent cycling stability with 80.1%capacity retention after 500 cycles at 2.0 A g^(-1).The novel strategy and the outstanding battery performance presented in this work should shed light on the development of high-performance and flexible ZIBs.
文摘Highly fecund marine species with dispersive life-history stages often display large population sizes and wide geographic distribution ranges. Consequently, they are expected to experience reduced genetic drift, efficient selection fueled by frequent adaptive mutations, and high migration loads. This has important consequences for understanding how local adaptation proceeds in the sea. A key issue in this regard, relates to the genetic architecture underlying fitness traits. Theory predicts that adaptation may involve many genes but with a high variance in effect size. Therefore, the effect of selection on allele frequencies may be substantial for the largest effect size loci, but insignificant for small effect genes. In such a context, the performance of population genomic methods to unravel the genetic basis of adaptation depends on the fraction of adaptive genetic variance explained by the cumulative effect of outlier loci. Here, we address some methodological challenges associated with the detection of local adaptation using molecular approaches. We provide an overview of genome scan methods to detect selection, including those assuming complex demographic models that better describe spatial population structure. We then focus on quantitative genetics approaches that search for genotype-phenotype associations at different genomic scales, including genome-wide methods evaluating the cumulative effect of variants. We argue that the limited power of single locus tests can be alleviated by the use of polygenic scores to estimate the joint contribution of candidate variants to phenotypic variation.
基金financially supported by the National Natural Science Foundation of China(No.61973223)the Innovative Talents in Colleges and Universities in Liaoning Province(No.2020389)+3 种基金Liao Ning Revitalization Talents Program(No.XLYC2007051)Liaoning Educational Department Foundation(No.LJKMZ20220762)the Natural Science Foundation of Liaoning Province(No.2021-MS-257)the Young and Middle-aged Scientific and Technological Innovation Talents of Shenyang Science and Technology Bureau(No.RC200352)。
文摘Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life.However,the traditional semiconductor formaldehyde gas sensor cannot work at room temperature,which limits its practical application.Therefore,developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic.In this study,Ti_(3)C_(2)Tx/SnO_(2)heterostructures were constructed,which could selectively detect formaldehyde at room temperature with a response value of 29.16%(10×10^(-6)).In addition,the sensor shows a remarkable theoretical detection limit of 5.09×10^(-9)and good longterm stability.Density functional theory(DFT)simulations reveal that SnO_(2)nano spheres provide the majority of adsorption sites that strongly interact with formaldehyde.Meanwhile,Ti_(3)C_(2)T_(x)acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature.Moreover,the formation of p-n heterostructures between SnO_(2)and Ti_(3)C_(2)T_(x)boosts the Schottky barrier at the interface,which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas.This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.
基金Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:20214000000320Samsung Research Funding&Incubation Center of Samsung Electronics,Grant/Award Number:SRFC-MA1901-06。
文摘Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51072012 and 51272015)partially supported by the Ph.D. Research Startup Foundation of Henan Normal University (No. 5101029170290)the Australian Research Council through a Discovery Project (DP140102581)
文摘Bismuth-based compounds have been regarded as an important class of visible-light photocatalysts due to their special electronic structures. In this paper, iodide ions are introduced to modify bismuth-based compound, Bi(24)O(31)Br(10), forming a Bi(24)O(31)Br(10)/BiOI heterojunction structure. A significant enhancement of photocatalytic activity compared to the parent compounds is observed in de-coloration of rhodamine B(Rh.B) solution. The improved photocatalytic property of Bi(24)O(31)Br(10)/BiOI heterojunction is ascribed to the unique electronic structure consisting of complementary band structures of BiOI and Bi(24)O(31)Br(10).Iodide ions are regarded as an effective reagent to construct bismuth-based photocatalytic heterojunctions with improved photocatalytic activity.
基金supported by the National Natural Science Foundation of China(Nos.11675051,51302079,51702138)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘It is generally considered that the hydrogenation of CO2 is the critical bottleneck of the CO2 electroreduction.In this work,with the aid of density functional theory(DFT)calculations,the catalytic hydrogenation of CO2 molecules over Indium-doped SnP3 catalyst were systematically studied.Through doping with indium(In)atom,the energy barrier of CO2 protonation is reduced and OCHO*species could easily be generated.This is mainly due to the p orbital of In exhibits strong hybridization with the p orbital of O,indicating that there is a strong interaction between OCHO*and In-doped SnP3 catalyst.As a result,In-doped SnP3 possesses high-efficiency and high-selectivity for converting CO2 into HCOOH with a low limiting potential of-0.17 V.Our findings will offer theoretical guidance to CO2 electroreduction.
基金supported by the National Natural Science Foundation of China(Nos.51302079,51702138)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘Oxygen evolution reaction(OER) is admitted to an important half reaction in water splitting for sustainable hydrogen production.The sluggish four-electron process is known to be the bottleneck for enhancing the efficiency of OER.In this regard,tremendous efforts have been devoted to developing effective catalysts for OER.In addition to Ir-or Ru-based oxides taken as the benchmark,transition metal carbides have attracted ever-increasing interest due to the high activity and stability as low-cost OER electrocatalysts.In this review,the transition metal carbides for water oxidation electrocatalysis concerning design strategies and synthesis are briefly summarized.Some typical applications for various carbides are also highlighted.Besides,the development trends and outlook are also discussed.
文摘The electrochemical nitrogen reduction reaction(NRR)to directly produce NH3 from N_(2) and H_(2)O under ambient conditions has attracted significant attention due to its ecofriendliness.Nevertheless,the electrochemical NRR presents several practical challenges,including sluggish reaction and low selectivity.Here,bi-atom catalysts have been proposed to achieve excellent activity and high selectivity toward the electrochemical NRR by Ma and his co-workers.It could accelerate the kinetics of N_(2)-to-NH_(3) electrochemical conversion and possess better electrochemical NRR selectivity.This work sheds light on the introduction of bi-atom catalysts to enhance the performance of the electrochemical NRR.
基金supported in part by the Erasmus Mundus project MAHEVAthe CNRS-UM1-UM2 PEPS project MoD yCAsupported by the Entomology department, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
文摘Objective: To record the human cases of dengue fever(DF) and investigate the Aedes mosquito species circulating during the Hanoi 2011 DF epidemics. Methods: 24 different outbreak points were recorded in 8 districts between August and December 2011. Results: 140 patients were hospitalized following dengue diagnostic with a predominance of males(59.3%) and the 15-34 age class. Only DENV-1(11.27%) and DENV-2(88.73%) serotypes were detected in human samples. Mosquito sampling performed in and around patients households revealed the predominance of Aedes aegypti(95.15%) versus Aedes albopictus(4.85%). There is a positive correlation between the population density of Aedes aegypti and the number of human cases and duration of outbreaks. Conclusions: This was not observed for Aedes albopictus. 3 pools of Aedes aegypti were positive with dengue virus, two with DENV-1 and one with DENV-2.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021M3H4A1A02045967)(NRF-2021M3H4A1A02048137)supported by the Chung-Ang University Research Scholarship Grants in 2021。
文摘Fast interfacial kinetics derived from bicontinuous three-dimensional(3D)architecture is a strategic feature for achieving fast-charging lithium-ion batteries(LIBs).One of the main reasons is its large active surface and short diffusion path.Yet,understanding of unusual electrochemical properties still remain great challenge due to its complexity.In this study,we proposed a nickel–tin compound(Ni_(3)Sn_(4))supported by 3D Nickel scaffolds as main frame because the Ni_(3)Sn_(4) clearly offers a higher reversible capacity and stable cycling performance than bare tin(Sn).In order to verify the role of Ni,atomic-scale simulation based on density functional theory systematically addressed to the reaction mechanism and structural evolution of Ni_(3)Sn_(4) during the lithiation process.Our findings are that Ni enables Ni_(3)Sn_(4) to possess higher mechanical stability in terms of reactive flow stress,subsequently lead to improve Li storage capability.This study elucidates an understanding of the lithiation mechanism of Ni_(3)Sn_(4) and provides a new perspective for the design of high-capacity and high-power 3D anodes for fast-charging LIBs.
文摘Chaotic genetic patchiness (CGP) refers to surprising patterns of spatial and temporal genetic structure observed in some marine species at a scale where genetic variation should be efficiently homogenized by gene flow via larval dispersal. Here we review and discuss 4 mechanisms that could generate such unexpected patterns: selection, sweepstakes reproductive success, collective dispersal, and temporal shifts in local population dynamics. First, we review examples where genetic differentiation at specific loci was driven by diversifying selection, which was historically the first process invoked to explain CGP. Second, we turn to neutral demographic processes that may drive genome-wide effects, and whose effects on CGP may be enhanced when they act together. We discuss how sweepstakes reproductive success accelerates genetic drift and can thus generate genetic structure, provided that gene flow is not too strong. Collective dispersal is another mechanism whereby genetic structure can be maintained regardless of dispersal intensity, because it may prevent larval cohorts from becoming entirely mixed. Theoretical analyses of both the sweepstakes and the collective dispersal ideas are presented. Finally, we discuss an idea that has received less attention than the other ones just mentioned, namely temporal shifts in local population dynamics.