Livestock cultivation is a significant source of greenhouse gas(GHG) emissions, accounting for 14.5% of the total anthropogenic emissions. China is responsible for a considerable share of the global livestock emission...Livestock cultivation is a significant source of greenhouse gas(GHG) emissions, accounting for 14.5% of the total anthropogenic emissions. China is responsible for a considerable share of the global livestock emissions, particularly caused by pork production. We used the Kaya identity and the logarithmic mean Divisia index(LMDI) to decompose the national annual GHG emissions from enteric fermentation and manure management in pig farming in China from 1976 to 2016. We decomposed the sources of the emissions into five driving factors:(1) technological progress(e.g., feed improvement);(2) structural adjustment in the livestock sector;(3) structural adjustment in agriculture;(4) affluence;and(5) population growth. The results showed that the net GHG emissions from the pig sector in China increased 16 million tons(Mt) of carbon dioxide equivalents(CO2 eq) during the study period. The decomposition analysis revealed that structural adjustment in agriculture, growing affluence, and population growth contributed to an increase of the GHG emissions of pork production by 23, 41, and 13 Mt CO2 eq, respectively. The technological progress and structural changes in animal husbandry mitigated emissions by –51 and –11 Mt CO2 eq, respectively. Further technological progress in pig production and optimizing the economic structures are critical for further reducing GHG emissions in China's pig industry. Our results highlight the dominant role of technological changes for emission reductions in the pig farming.展开更多
With its amplification simultaneously emerging in cryospheric regions,especially in the Tibetan Plateau,global warming is undoubtedly occurring.In this study,we utilized 28 global climate models to assess model perfor...With its amplification simultaneously emerging in cryospheric regions,especially in the Tibetan Plateau,global warming is undoubtedly occurring.In this study,we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014,reported spatiotemporal variability in surface air temperature in the future under four scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5),and further quantified the timing of warming levels(1.5,2,and 3℃)in the region.The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well,although with differences across individual models.The projected surface air temperature,by 2099,would warm by 1.9,3.2,5.2,and 6.3℃relative to the reference period(1981–2010),with increasing rates of 0.11,0.31,0.53,and 0.70℃/decade under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios for the period 2015–2099,respectively.Compared with the preindustrial periods(1850–1900),the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5℃threshold and will break 2℃in the next decade,but there is still a chance to limit the temperature below 3℃in this century.Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.展开更多
A rise in the number of flood-affected people and areas has increased the interest in new methods and concepts that account for this change.Citizens are integrated into disaster risk reduction processes through partic...A rise in the number of flood-affected people and areas has increased the interest in new methods and concepts that account for this change.Citizens are integrated into disaster risk reduction processes through participatory approaches and can provide valuable up-to-date local knowledge.During a field study in Eberbach(Baden–Wuerttemberg,Germany)sketch maps and questionnaires were used to capture local knowledge about flooding.Based on a previous study on urban flooding in Santiago de Chile,the tools were adapted and applied to river flooding in the city of Eberbach,which is regularly flooded by the Neckar River,a major river in southwest Germany.The empirical database of the study comprises 40 participants in the study area and 40 in a control area.Half of the participants in each group are residents and half are pedestrians.Purposive sampling was used,and the questionnaires aimed to gather demographic information and explore what factors,such as property,influence the risk perception of the study participants.The results show that residents identify a larger spatial area as at risk than pedestrians,and owning property leads to higher risk awareness.The flood type influenced the choice of the base maps for the sketch maps.For river flooding,one map with an overview of the area was sufficient,while for urban flooding a second map with more details of the area also enables the marking of small streets.The information gathered can complement authoritative data such as from flood models.This participatory approach also increases the communication and trust between local governments,researchers,and citizens.展开更多
基金financially supported by the National Social Science Fund of China (16CJL035)the China Scholarship Council Program for Visiting Scholars。
文摘Livestock cultivation is a significant source of greenhouse gas(GHG) emissions, accounting for 14.5% of the total anthropogenic emissions. China is responsible for a considerable share of the global livestock emissions, particularly caused by pork production. We used the Kaya identity and the logarithmic mean Divisia index(LMDI) to decompose the national annual GHG emissions from enteric fermentation and manure management in pig farming in China from 1976 to 2016. We decomposed the sources of the emissions into five driving factors:(1) technological progress(e.g., feed improvement);(2) structural adjustment in the livestock sector;(3) structural adjustment in agriculture;(4) affluence;and(5) population growth. The results showed that the net GHG emissions from the pig sector in China increased 16 million tons(Mt) of carbon dioxide equivalents(CO2 eq) during the study period. The decomposition analysis revealed that structural adjustment in agriculture, growing affluence, and population growth contributed to an increase of the GHG emissions of pork production by 23, 41, and 13 Mt CO2 eq, respectively. The technological progress and structural changes in animal husbandry mitigated emissions by –51 and –11 Mt CO2 eq, respectively. Further technological progress in pig production and optimizing the economic structures are critical for further reducing GHG emissions in China's pig industry. Our results highlight the dominant role of technological changes for emission reductions in the pig farming.
基金supported by the National Natural Science Foundation of China(U21A2006)the National Key Research and Development Program of China(2019YFC0507401)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20100102)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0208)the Start-up Funds for Introduced Talent at Lanzhou University(561120217)the China Scholarship Council(201904910442,201906990037)。
文摘With its amplification simultaneously emerging in cryospheric regions,especially in the Tibetan Plateau,global warming is undoubtedly occurring.In this study,we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014,reported spatiotemporal variability in surface air temperature in the future under four scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5),and further quantified the timing of warming levels(1.5,2,and 3℃)in the region.The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well,although with differences across individual models.The projected surface air temperature,by 2099,would warm by 1.9,3.2,5.2,and 6.3℃relative to the reference period(1981–2010),with increasing rates of 0.11,0.31,0.53,and 0.70℃/decade under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios for the period 2015–2099,respectively.Compared with the preindustrial periods(1850–1900),the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5℃threshold and will break 2℃in the next decade,but there is still a chance to limit the temperature below 3℃in this century.Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.
文摘A rise in the number of flood-affected people and areas has increased the interest in new methods and concepts that account for this change.Citizens are integrated into disaster risk reduction processes through participatory approaches and can provide valuable up-to-date local knowledge.During a field study in Eberbach(Baden–Wuerttemberg,Germany)sketch maps and questionnaires were used to capture local knowledge about flooding.Based on a previous study on urban flooding in Santiago de Chile,the tools were adapted and applied to river flooding in the city of Eberbach,which is regularly flooded by the Neckar River,a major river in southwest Germany.The empirical database of the study comprises 40 participants in the study area and 40 in a control area.Half of the participants in each group are residents and half are pedestrians.Purposive sampling was used,and the questionnaires aimed to gather demographic information and explore what factors,such as property,influence the risk perception of the study participants.The results show that residents identify a larger spatial area as at risk than pedestrians,and owning property leads to higher risk awareness.The flood type influenced the choice of the base maps for the sketch maps.For river flooding,one map with an overview of the area was sufficient,while for urban flooding a second map with more details of the area also enables the marking of small streets.The information gathered can complement authoritative data such as from flood models.This participatory approach also increases the communication and trust between local governments,researchers,and citizens.