The Doppler backscattering(DBS)diagnostic is widely used to measure the localized density fluctuations and the propagation velocity of turbulent structures.Microwave is launched at a frequency that approaches a cutoff...The Doppler backscattering(DBS)diagnostic is widely used to measure the localized density fluctuations and the propagation velocity of turbulent structures.Microwave is launched at a frequency that approaches a cutoff layer in the plasma at an angle oblique to the cutoff layer.A new Q-band multichannel DBS system based on a comb generator has been designed and tested for application on the HL-3 tokamak.With the comb generator and heterodyne scheme,the stability and flexibility of the new DBS system are improved.The new DBS diagnostic has a high output power(~10 dBm),good power flatness(<5 dB in Q-band),and frequency stability,and the inter-frequency separation is tunable remotely.This article introduces the system design,laboratory test results,and initial experimental results from the HL-3 tokamak.With the help of the newly developed multichannel DBS,the turbulence information can be studied with high temporal and spatial resolution.展开更多
The dynamics of long-wavelength(kθ<1.4 cm^(-1)),broadband(20 kHz–200 kHz)electron temperature fluctuations(Te/Te)of plasmas in gas-puff experiments are observed for the first time in HL-2A tokamak.In a relatively...The dynamics of long-wavelength(kθ<1.4 cm^(-1)),broadband(20 kHz–200 kHz)electron temperature fluctuations(Te/Te)of plasmas in gas-puff experiments are observed for the first time in HL-2A tokamak.In a relatively low density(ne(0)■0.91×10^(19)m^(-3)–1.20×10^(19)m^(-3))scenario,after gas-puffing the core temperature increases and the edge temperature drops.On the contrary,temperature fluctuation drops at the core and increases at the edge.Analyses show the non-local emergence is accompanied with a long radial coherent length of turbulent fluctuations.While in a higher density(ne(0)?1.83×10^(19)m^(-3)–2.02×10^(19)m^(-3))scenario,the phenomena are not observed.Furthermore,compelling evidence indicates that E×B shear serves as a substantial contributor to this extensive radial interaction.This finding offers a direct explanatory link to the intriguing core-heating phenomenon witnessed within the realm of non-local transport.展开更多
In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an...In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an integrated control of the wall conditioning,plasma configuration,divertor heat flux,particle exhaust,impurity management,and effective coupling of multiple RF heating and current drive sources at high injected power.The plasma current(Ip - 0.45 MA) was fully-noninductively driven(Vloop 〈 0.0 V) by a combination of-2.5 MW LHW,-0.4 MW ECH and -0.8 MW ICRF.This result demonstrates the progress of physics and technology studies on EAST,and will benefit the physics basis for steady state operation of ITER and CFETR.展开更多
In 2021,EAST realized a steady-state long pulse with a duration over 100 s and a core electron temperature over 10 keV.This is an integrated operation that resolves several key issues,including active control of wall ...In 2021,EAST realized a steady-state long pulse with a duration over 100 s and a core electron temperature over 10 keV.This is an integrated operation that resolves several key issues,including active control of wall conditioning,long-lasting fully noninductive current and divertor heat/particle flux.The fully noninductive current is driven by pure radio frequency(RF)waves with a lower hybrid current drive power of 2.5 MW and electron cyclotron resonance heating of 1.4 MW.This is an excellent experimental platform on the timescale of hundreds of seconds for studying multiscale instabilities,electron-dominant transport and particle recycling(plasma-wall interactions)under weak collisionality.展开更多
The blob properties in I-mode and ELM-free H-mode plasmas compared to L-mode have been investigated on the EAST tokamak,including the blob detection rate Nb,sizeδb,lifetimeτb and radial velocity vr,b.The blob proper...The blob properties in I-mode and ELM-free H-mode plasmas compared to L-mode have been investigated on the EAST tokamak,including the blob detection rate Nb,sizeδb,lifetimeτb and radial velocity vr,b.The blob properties in L-mode and I-mode are similar,and those in ELM-free H-mode are different to them.The blob Nbis smaller whileτbis larger in H-mode.The experimental blob sizeδband velocity scalings vr,b-δb show a good agreement with the theoretical models.The variation in blob properties during the L-I and H-L transitions,and their relations to the scrape-off layer(SOL)density,edge and SOL turbulence,and SOL collisionality are discussed.The suppression of the edge(inside the last closed flux surface)turbulence is not reflected in the blob behavior,while the blob detection rate shows a correlation with the SOL density and its low-frequency(3–50 kH z)fluctuations.In addition,the blob detection rate is found to increase with the divertor collisionalityΛdiv,indicating a dependence of blob behavior onΛdiv.The differences in blob detection rates among the three operating regimes might be due to their different SOL densities and collisionalities.The investigation contributes to understanding the influences of edge and SOL plasma parameters on the blob behavior.展开更多
Lower hybrid wave (LHW)-plasma coupling and lower hybrid current drive (LHCD) experiments in divertor, including single-null and double-null, and limiter configurations were conducted systematically in EAST. A max...Lower hybrid wave (LHW)-plasma coupling and lower hybrid current drive (LHCD) experiments in divertor, including single-null and double-null, and limiter configurations were conducted systematically in EAST. A maximum power for launched LHW is 1.4 MW and the plasma current with LHCD is about 1 MA. It is indicated that the coupling is best in limiter configuration, then in single-null one, while worst in double-null one. Study in current drive efficiency by a least squares fit shows that there is no obvious difference in drive efficiency between the double-null and the single-null cases, whereas the efficiency is a slightly lower in the limiter case. The effect of plasma density on the current drive efficiency is due to the influence of density on impurity concentration.展开更多
The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on th...The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the under- standing of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (Nr) are oresented and discussed.展开更多
The turbulence characteristics of plasmas with internal transport barriers in the HL-2A tokamak are analyzed by means of linear gyrokinetic simulations. It is found that turbulence is dominated by the ion temperature ...The turbulence characteristics of plasmas with internal transport barriers in the HL-2A tokamak are analyzed by means of linear gyrokinetic simulations. It is found that turbulence is dominated by the ion temperature gradient(ITG)mode together with large-scale modes characterized by high-frequency electromagnetic fluctuation, which are destabilized by the steep ion temperature gradient in the weak magnetic shear regime. Comparison with solutions of analytical dispersion relations shows that their linear features match well with the beta-induced Alfvén eigenmode branch of the shear Alfvénic spectrum. It is further clarified that the large population of fast ions in these plasmas plays a stabilization role through the dilution mechanism in high-n ITG mode regimes.展开更多
This paper discusses edge oscillatory plasma flows, geodesic acoustic mode (GAM) and limit cycle oscillations (LCOs), which have been measured by Doppler reflectometry prior to the high confinement mode (H-mode)...This paper discusses edge oscillatory plasma flows, geodesic acoustic mode (GAM) and limit cycle oscillations (LCOs), which have been measured by Doppler reflectometry prior to the high confinement mode (H-mode) in the HL-2A tokamak. The complex relations between the flows and background turbulence have been analyzed. It was observed that the GAM and LCO coexist, and these two flows and turbulence have strong nonlinear interactions during the intermediate confinement phase (I-phase). Dynamics of the shear flows and turbulence prior to the H-mode shows that the oscillatory flows quench the turbulence along with the increase of the mean E x B flow at the early stage of the I-phase, then the oscillatory flows are damped and the further increased mean flow takes over the role in turbulence suppression. The reduced turbulent transport results in the formation of a steep edge transport barrier. It suggests that the oscillatory flows can initiate the L-H transition through providing a positive feedback for the increase of the mean E × B flow strength.展开更多
This paper describes an asymmetric control method for the firing angle and a start/stop timing shift control of four thyristor converters called "Booster PS" to minimize the reactive power fluctuation during plasma ...This paper describes an asymmetric control method for the firing angle and a start/stop timing shift control of four thyristor converters called "Booster PS" to minimize the reactive power fluctuation during plasma initiation in JT-60SA. From the simulation using the "PSCAD/EMTDC" code, it is found that these control methods can drastically reduce the reac- tive power induced by the four units of the "Booster PS". In addition, the voltage fluctuation of the motor-generator connected to the "Booster PS" is expected to be suppressed. This can also contribute to achieve stable control of the JT-60SA magnet power supplies.展开更多
The impact of the E×B flow shear stabilization on particle transport and density peaking at JET is analyzed in the framework of integrated modelling with the CRONOS code.For that purpose,plasmas from a power scan...The impact of the E×B flow shear stabilization on particle transport and density peaking at JET is analyzed in the framework of integrated modelling with the CRONOS code.For that purpose,plasmas from a power scan which show a significant increasing of density peaking with the injected neutral beam injection power have been used as a modeling basis.By means of simulations with the quasilinear model GLF23 for the heat and particle transport,a strong link between the particle confinement and E×B flow shear stabilization is found.This is particularly important close to the pedestal region where the particle pinch direction becomes strongly inward for high E×B flow shear values.Such impact introduces some non-negligible deviation from the well-known collisonality dependence of the density peaking,whose general trend has been also obtained in the framework of this modelling by performing pedestal density scans.展开更多
On the experimental advanced superconducting tokamak(EAST), a pair of voltage and current probes(V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance,...On the experimental advanced superconducting tokamak(EAST), a pair of voltage and current probes(V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads RL?>?2.5 Ω, while the resistance deviations appear large for loads RL?<?1.5 Ω, which implies that the power loss cannot be neglected at high VSWR. As the factors that give rise to the deviation of coupling resistance calculation, the phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.展开更多
The standard density profile reconstruction techniques are based on the WKB approximation of the probing wave’s phase,making them unable to properly reconstruct blind areas in the cut-off frequency profile.The recons...The standard density profile reconstruction techniques are based on the WKB approximation of the probing wave’s phase,making them unable to properly reconstruct blind areas in the cut-off frequency profile.The reconstruction suffers a significant immediate error that is not rapidly damped.It is demonstrated that even though no reflections occur inside the hollow region causing the blind area,the higher probing frequencies that propagate through it carry information that can be used to estimate its properties.The usually ignored full-wave effects were investigated with the use of full-wave simulations in 1 D,with special attention paid to the frequency band where they are dominant.A database of perturbation signals was simulated onfive-dimensions of parameters and an application of the database inversion was demonstrated for a magnetic island in a Tore Supra discharge.The new adapted reconstruction scheme improved the description of the density profile inside the hollow region and also along 10 cm after it.展开更多
A broadband, O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A. The main feature of the Doppler reflectometry is its capability to be tuned to any...A broadband, O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A. The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz. This property enables us to probe several plasma layers within a short time interval during a discharge, permitting the characterization of the radial distribution of plasma fluctuations. The system allows us to extract important information about the velocity change layer, namely its spatial localization. In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 〈 r 〈 30cm if only the line average density exceeds 2.2×10^19 m^-3. The density gradient change is measured in the same region, too.展开更多
In the field of nuclear fusion fuelling,the precise characterization of supersonic molecular beam parameters is essential for the accurate control of plasma conditions and the examination of experimental observations....In the field of nuclear fusion fuelling,the precise characterization of supersonic molecular beam parameters is essential for the accurate control of plasma conditions and the examination of experimental observations.However,the direct measurement of such supersonic beam distribution properties in high-vacuum environments is challenging and complex.The establishment of a comprehensive diagnostic platform for these measurements not only involves substantial costs but also requires technical expertise.Although density profiles can be assessed using schlieren imaging techniques,the measurement of velocity profiles continues to be a complex task.This paper presents an innovative approach using deep learning strategies to create a neural network model based on the U-Net architecture.The model was developed to infer beam velocity profiles from measured beam density data with high precision.Using the simulated beam profile data,a dataset of beam density and velocity profiles under varying gas source pressures(5,10,and 50 bar)was created for training and verification of the neural network.To improve the predictive fidelity of the model,the influence of incorporating spatial attention,channel attention,and their hybrid form,the convolutional block attention module(CBAM),into the predictive model was examined in this study.Furthermore,this research demonstrates the generalization capabilities of the model by predicting the fluid parameter profiles under gas source pressures of 20,30,and 40 bar,which are outside the range of the training dataset.The performance of the neural network was evaluated using established metrics such as mean squared error and structural similarity index measure.In addition,a Grad-CAM visualization of the influence of attentional mechanisms on the prediction of the model helps to understand the internal mechanisms of the model and thus improve its interpretability.CBAM attention has been shown to outperform other attention mechanisms in predicting fuel beam profiles.展开更多
The control of large edge localized modes(ELMs) is a critical issue for the successful operation of future burning plasma devices,such as the international thermonuclear experimental reactor(ITER) and China fusion eng...The control of large edge localized modes(ELMs) is a critical issue for the successful operation of future burning plasma devices,such as the international thermonuclear experimental reactor(ITER) and China fusion engineering test reactor(CFETR). In this paper, we present a new active and effective means of ELM suppression using ion cyclotron resonant heating(ICRH) on the experimental advanced superconducting tokamak(EAST). We obtained the key role of the external E × B velocity shear near the pedestal top and the scrape-off-layer(SOL) induced by the RF sheath potential of ICRH in ELM suppression. The experimental results showed a positive correlation between the RF sheath and the E × B shear rate in SOL. BOUT++ simulations indicate that increased E × B velocity shear rates in the pedestal and SOL regions promote ELM suppression;thereby, supporting the experimental observations on EAST. These findings suggest a new simple approach to access the ELM suppressed regimes in plasma with low torque input as ITER baseline discharges.展开更多
基金supported by National Natural Science Foundation of China(Nos.12105087,12275096,and 11922503)the Joint Funds of the National Natural Science Foundation of China(No.U21A20440)the Science and Technology Planning Project of Sichuan Province(No.2023YFG0139)。
文摘The Doppler backscattering(DBS)diagnostic is widely used to measure the localized density fluctuations and the propagation velocity of turbulent structures.Microwave is launched at a frequency that approaches a cutoff layer in the plasma at an angle oblique to the cutoff layer.A new Q-band multichannel DBS system based on a comb generator has been designed and tested for application on the HL-3 tokamak.With the comb generator and heterodyne scheme,the stability and flexibility of the new DBS system are improved.The new DBS diagnostic has a high output power(~10 dBm),good power flatness(<5 dB in Q-band),and frequency stability,and the inter-frequency separation is tunable remotely.This article introduces the system design,laboratory test results,and initial experimental results from the HL-3 tokamak.With the help of the newly developed multichannel DBS,the turbulence information can be studied with high temporal and spatial resolution.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFE0301203)the Innovation Program of Southwestern Institute of Physics(Grant No.202301XWCX001)+2 种基金the Sichuan Science and Technology Program(Grant Nos.2023ZYD0014 and 2021YFSY0044)the National Natural Science Foundation of China(Grant No.12175055)the Shenzhen Municipal Collaborative Innovation Technology Program-International Science and Technology Cooperation Project(Grant No.GJHZ20220913142609017)。
文摘The dynamics of long-wavelength(kθ<1.4 cm^(-1)),broadband(20 kHz–200 kHz)electron temperature fluctuations(Te/Te)of plasmas in gas-puff experiments are observed for the first time in HL-2A tokamak.In a relatively low density(ne(0)■0.91×10^(19)m^(-3)–1.20×10^(19)m^(-3))scenario,after gas-puffing the core temperature increases and the edge temperature drops.On the contrary,temperature fluctuation drops at the core and increases at the edge.Analyses show the non-local emergence is accompanied with a long radial coherent length of turbulent fluctuations.While in a higher density(ne(0)?1.83×10^(19)m^(-3)–2.02×10^(19)m^(-3))scenario,the phenomena are not observed.Furthermore,compelling evidence indicates that E×B shear serves as a substantial contributor to this extensive radial interaction.This finding offers a direct explanatory link to the intriguing core-heating phenomenon witnessed within the realm of non-local transport.
基金supported by the National Magnetic Conlinement Fusion Science Program of China(Nos.2015GB102000 and 2015GB103000)
文摘In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an integrated control of the wall conditioning,plasma configuration,divertor heat flux,particle exhaust,impurity management,and effective coupling of multiple RF heating and current drive sources at high injected power.The plasma current(Ip - 0.45 MA) was fully-noninductively driven(Vloop 〈 0.0 V) by a combination of-2.5 MW LHW,-0.4 MW ECH and -0.8 MW ICRF.This result demonstrates the progress of physics and technology studies on EAST,and will benefit the physics basis for steady state operation of ITER and CFETR.
基金the National Key R&D Program of China(No.2022YFE03010003)National Natural Science Foundation of China(No.12275309).
文摘In 2021,EAST realized a steady-state long pulse with a duration over 100 s and a core electron temperature over 10 keV.This is an integrated operation that resolves several key issues,including active control of wall conditioning,long-lasting fully noninductive current and divertor heat/particle flux.The fully noninductive current is driven by pure radio frequency(RF)waves with a lower hybrid current drive power of 2.5 MW and electron cyclotron resonance heating of 1.4 MW.This is an excellent experimental platform on the timescale of hundreds of seconds for studying multiscale instabilities,electron-dominant transport and particle recycling(plasma-wall interactions)under weak collisionality.
基金supported by the National Key R&D Program of China(Nos.2022YFE03020004,2017YFE0301300,2018YFE0303104 and 2019YFE03030000)the Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences+3 种基金National Natural Science Foundation of China(Nos.12275313,11922513,12005004 and U19A20113)the Institute of Energy,Hefei Comprehensive National Science Center(No.GXXT-2020-004)the Anhui Provincial Natural Science Foundation(No.2008085QA38)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(No.2020HSC-UE009)。
文摘The blob properties in I-mode and ELM-free H-mode plasmas compared to L-mode have been investigated on the EAST tokamak,including the blob detection rate Nb,sizeδb,lifetimeτb and radial velocity vr,b.The blob properties in L-mode and I-mode are similar,and those in ELM-free H-mode are different to them.The blob Nbis smaller whileτbis larger in H-mode.The experimental blob sizeδband velocity scalings vr,b-δb show a good agreement with the theoretical models.The variation in blob properties during the L-I and H-L transitions,and their relations to the scrape-off layer(SOL)density,edge and SOL turbulence,and SOL collisionality are discussed.The suppression of the edge(inside the last closed flux surface)turbulence is not reflected in the blob behavior,while the blob detection rate shows a correlation with the SOL density and its low-frequency(3–50 kH z)fluctuations.In addition,the blob detection rate is found to increase with the divertor collisionalityΛdiv,indicating a dependence of blob behavior onΛdiv.The differences in blob detection rates among the three operating regimes might be due to their different SOL densities and collisionalities.The investigation contributes to understanding the influences of edge and SOL plasma parameters on the blob behavior.
基金supported by National Natural Science Foundation of China (Nos. 10875149, 10928509 and 10805057)the National Magnetic confinement Fusion Science Program of China (2010GB105004)+1 种基金the Dean Foundation of Hefei Institute of Physical Science,Chinese Academy of Sciencepartly supported by Core University Program between China and Japan
文摘Lower hybrid wave (LHW)-plasma coupling and lower hybrid current drive (LHCD) experiments in divertor, including single-null and double-null, and limiter configurations were conducted systematically in EAST. A maximum power for launched LHW is 1.4 MW and the plasma current with LHCD is about 1 MA. It is indicated that the coupling is best in limiter configuration, then in single-null one, while worst in double-null one. Study in current drive efficiency by a least squares fit shows that there is no obvious difference in drive efficiency between the double-null and the single-null cases, whereas the efficiency is a slightly lower in the limiter case. The effect of plasma density on the current drive efficiency is due to the influence of density on impurity concentration.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2011GB102000,2012GB103000,2013GB106001,and2015GB102003)the National Natural Science Foundation of China(Grant Nos.11175206 and 11305211)+1 种基金the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(Grant No.11261140328)the Fundamental Research Funds for the Central Universities of China(Grant No.JZ2015HGBZ0472)
文摘The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the under- standing of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (Nr) are oresented and discussed.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFE0301201)partially by the National Natural Science Foundation of China (Grant Nos. U1967206 and 11775069)。
文摘The turbulence characteristics of plasmas with internal transport barriers in the HL-2A tokamak are analyzed by means of linear gyrokinetic simulations. It is found that turbulence is dominated by the ion temperature gradient(ITG)mode together with large-scale modes characterized by high-frequency electromagnetic fluctuation, which are destabilized by the steep ion temperature gradient in the weak magnetic shear regime. Comparison with solutions of analytical dispersion relations shows that their linear features match well with the beta-induced Alfvén eigenmode branch of the shear Alfvénic spectrum. It is further clarified that the large population of fast ions in these plasmas plays a stabilization role through the dilution mechanism in high-n ITG mode regimes.
基金partially supported within the framework of the cooperation between the French Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and the China National Nuclear Corporation (CNNC)partially supported by National Natural Science Foundation of China under Grant Nos. 11305053, 10990213, 10975049, 11475057, 11275062, 11375057 and 11575055partially supported by Chinese National Fusion Project for ITER under Grant Nos. 2013GB107000 and 2014GB108000
文摘This paper discusses edge oscillatory plasma flows, geodesic acoustic mode (GAM) and limit cycle oscillations (LCOs), which have been measured by Doppler reflectometry prior to the high confinement mode (H-mode) in the HL-2A tokamak. The complex relations between the flows and background turbulence have been analyzed. It was observed that the GAM and LCO coexist, and these two flows and turbulence have strong nonlinear interactions during the intermediate confinement phase (I-phase). Dynamics of the shear flows and turbulence prior to the H-mode shows that the oscillatory flows quench the turbulence along with the increase of the mean E x B flow at the early stage of the I-phase, then the oscillatory flows are damped and the further increased mean flow takes over the role in turbulence suppression. The reduced turbulent transport results in the formation of a steep edge transport barrier. It suggests that the oscillatory flows can initiate the L-H transition through providing a positive feedback for the increase of the mean E × B flow strength.
基金supported within the framework of the "Broader Approach Internationals Agreement"
文摘This paper describes an asymmetric control method for the firing angle and a start/stop timing shift control of four thyristor converters called "Booster PS" to minimize the reactive power fluctuation during plasma initiation in JT-60SA. From the simulation using the "PSCAD/EMTDC" code, it is found that these control methods can drastically reduce the reac- tive power induced by the four units of the "Booster PS". In addition, the voltage fluctuation of the motor-generator connected to the "Booster PS" is expected to be suppressed. This can also contribute to achieve stable control of the JT-60SA magnet power supplies.
基金supported by The Franco-Thai scholarship program and Development and Promotion of Science and Technology Talents Projectbeen carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No.633053。
文摘The impact of the E×B flow shear stabilization on particle transport and density peaking at JET is analyzed in the framework of integrated modelling with the CRONOS code.For that purpose,plasmas from a power scan which show a significant increasing of density peaking with the injected neutral beam injection power have been used as a modeling basis.By means of simulations with the quasilinear model GLF23 for the heat and particle transport,a strong link between the particle confinement and E×B flow shear stabilization is found.This is particularly important close to the pedestal region where the particle pinch direction becomes strongly inward for high E×B flow shear values.Such impact introduces some non-negligible deviation from the well-known collisonality dependence of the density peaking,whose general trend has been also obtained in the framework of this modelling by performing pedestal density scans.
基金National Natural Science Foundation of China under grant Nos. 11575237, 11775258, 11675213, 11375235 and 11375236National key research and development program (grant Nos. 2016YFA0400600 and 2016YFA0400601)+2 种基金International Scientific and Technological Cooperation Project of Anhui (grant No. 1704e1002207)the National Magnetic Confinement Fusion Science Programme of China (grant Nos. 2015GB101001 and 2013GB106001B)JSPSNRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC No. 11261140328)
文摘On the experimental advanced superconducting tokamak(EAST), a pair of voltage and current probes(V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads RL?>?2.5 Ω, while the resistance deviations appear large for loads RL?<?1.5 Ω, which implies that the power loss cannot be neglected at high VSWR. As the factors that give rise to the deviation of coupling resistance calculation, the phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.
基金carried out with the support of the Brazilian National Council for Scientific and Technological Development(CNPq)under the Science Without Borders programme,within the framework of the French Federation for Magnetic Fusion Studies(FR-FCM)and of the EUROfusion consortium with funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No.633053part-funded by the RCUK Energy Programme grant number EP/P012450/1。
文摘The standard density profile reconstruction techniques are based on the WKB approximation of the probing wave’s phase,making them unable to properly reconstruct blind areas in the cut-off frequency profile.The reconstruction suffers a significant immediate error that is not rapidly damped.It is demonstrated that even though no reflections occur inside the hollow region causing the blind area,the higher probing frequencies that propagate through it carry information that can be used to estimate its properties.The usually ignored full-wave effects were investigated with the use of full-wave simulations in 1 D,with special attention paid to the frequency band where they are dominant.A database of perturbation signals was simulated onfive-dimensions of parameters and an application of the database inversion was demonstrated for a magnetic island in a Tore Supra discharge.The new adapted reconstruction scheme improved the description of the density profile inside the hollow region and also along 10 cm after it.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10335060 and 10805015.
文摘A broadband, O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A. The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz. This property enables us to probe several plasma layers within a short time interval during a discharge, permitting the characterization of the radial distribution of plasma fluctuations. The system allows us to extract important information about the velocity change layer, namely its spatial localization. In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 〈 r 〈 30cm if only the line average density exceeds 2.2×10^19 m^-3. The density gradient change is measured in the same region, too.
基金supported by the National Key R&D Program of China(Grant No.2022YFE03060001)the Sichuan Natural Science Funds for Distinguished Young Scholars(Grant No.2024NSFJQ0067)the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering(Grant No.SUSE652A011)。
文摘In the field of nuclear fusion fuelling,the precise characterization of supersonic molecular beam parameters is essential for the accurate control of plasma conditions and the examination of experimental observations.However,the direct measurement of such supersonic beam distribution properties in high-vacuum environments is challenging and complex.The establishment of a comprehensive diagnostic platform for these measurements not only involves substantial costs but also requires technical expertise.Although density profiles can be assessed using schlieren imaging techniques,the measurement of velocity profiles continues to be a complex task.This paper presents an innovative approach using deep learning strategies to create a neural network model based on the U-Net architecture.The model was developed to infer beam velocity profiles from measured beam density data with high precision.Using the simulated beam profile data,a dataset of beam density and velocity profiles under varying gas source pressures(5,10,and 50 bar)was created for training and verification of the neural network.To improve the predictive fidelity of the model,the influence of incorporating spatial attention,channel attention,and their hybrid form,the convolutional block attention module(CBAM),into the predictive model was examined in this study.Furthermore,this research demonstrates the generalization capabilities of the model by predicting the fluid parameter profiles under gas source pressures of 20,30,and 40 bar,which are outside the range of the training dataset.The performance of the neural network was evaluated using established metrics such as mean squared error and structural similarity index measure.In addition,a Grad-CAM visualization of the influence of attentional mechanisms on the prediction of the model helps to understand the internal mechanisms of the model and thus improve its interpretability.CBAM attention has been shown to outperform other attention mechanisms in predicting fuel beam profiles.
基金supported by the National Key Research and Development Program(Grant Nos.2016YFA0400600,and 2016YFA0400601)the National MCF Energy R&D Program(Grant No.2018YFE0311200)+1 种基金the National Natural Science Foundation of China(Grant Nos.11975265,and U1967206)the Comprehensive Research Facility for Fusion Technology Program of China(Grant No.2018-000052-73-01-001228)。
文摘The control of large edge localized modes(ELMs) is a critical issue for the successful operation of future burning plasma devices,such as the international thermonuclear experimental reactor(ITER) and China fusion engineering test reactor(CFETR). In this paper, we present a new active and effective means of ELM suppression using ion cyclotron resonant heating(ICRH) on the experimental advanced superconducting tokamak(EAST). We obtained the key role of the external E × B velocity shear near the pedestal top and the scrape-off-layer(SOL) induced by the RF sheath potential of ICRH in ELM suppression. The experimental results showed a positive correlation between the RF sheath and the E × B shear rate in SOL. BOUT++ simulations indicate that increased E × B velocity shear rates in the pedestal and SOL regions promote ELM suppression;thereby, supporting the experimental observations on EAST. These findings suggest a new simple approach to access the ELM suppressed regimes in plasma with low torque input as ITER baseline discharges.