期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
The Evolution and Environmental Prospects of Renewable Bioplastics:Types,Production Methods,and Sustainability
1
作者 Farah Syazwani Shahar Thinesh Sharma Balakrishnan Mohamed Thariq Hameed Sultan 《Journal of Renewable Materials》 2025年第6期1071-1101,共31页
In this comprehensive review,the evolution and progress of bioplastics are examined,with an emphasis on their types,production methods,environmental impact,and biodegradability.In light of the increasing global effort... In this comprehensive review,the evolution and progress of bioplastics are examined,with an emphasis on their types,production methods,environmental impact,and biodegradability.In light of the increasing global efforts to address environmental degradation,bioplastics have emerged as a highly potential substitute for conventional petroleum-based plastics.This review classifies various categories of bioplastics,encompassing both biodegradable and bio-based variations,and assesses their environmental consequences using life cycle evaluations and biodegradability calculations.This paper analyzes the technological advancements that have enhanced the mechanical and thermal characteristics of bioplastics,hence increasing their feasibility for extensive commercial applications in diverse sectors.This review critically examines the possible uses of bioplastics in important industries including packaging,aerospace,and healthcare,emphasizing both achievements and current obstacles.In addition,the assessment addresses the economic and technical obstacles to expanding bioplastic manufacturing,namely concerns about cost,material efficiency,and waste disposal.Moreover,the article forecasts the future potential of bioplastics in furthering a sustainable circular economy and suggests methods to address existing constraints,such as improvements in recycling technology and the establishment of more economically efficient manufacturing methods.The findings are intended to educate policymakers,industry stakeholders,and researchers on the crucial contribution of bioplastics in attaining sustainability objectives and promoting innovation in the field of material science. 展开更多
关键词 BIOPLASTICS SUSTAINABILITY circular economy environmental impact technological innovations
在线阅读 下载PDF
Investigation of physico-chemical properties and microbial community during poultry manure co-composting process 被引量:6
2
作者 Omar Farah Nadia Loo Yu Xiang +3 位作者 Lee Yei Lie Dzulkornain Chairil Anuar Mohammed P.Mohd Afandi Samsu Azhari Baharuddin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第2期81-94,共14页
Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1(V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structu... Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1(V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy(FT-IR), thermogravimetry and differential thermal analysis(TG/DTA)and scanning electron microscopy(SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis(DGGE). The compost was able to reach its highest temperature of 71°C at day 3 and stabilized between 30 and 40°C for 8 weeks.CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both Li P and Mn P activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16 S r DNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting. 展开更多
关键词 COMPOSTING Poultry manure CELLULOSE Denaturing gel gradient ELECTROPHORESIS Microbial community
原文传递
Hybrid reinforced thermoset polymer composite in energy absorption tube application:A review 被引量:7
3
作者 A.B.M.Supian S.M.Sapuan +2 位作者 M.Y.M.Zuhri E.S.Zainudin H.H.Ya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期291-305,共15页
The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understa... The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understand the effect in hybridization within metal/synthetic fibre composite, synthetic/synthetic fibre composite and nature/synthetic fibre composite as energy absorption tube, which reflects on the energy absorption characteristics and crashworthiness behaviors in previous the study. By way of instance, a wide range of methodology and particular parameter in previous study such as the effect in fibre arrangement, matrix polymer, technique of fabrication, fibre treatment(natural fibre), design in geometry/cross-section and others mechanism of hybrid fibre composite tube are highlighted which to comprehend the capability of the mechanical performance and collapsible behavior as sacrificial structure in high-performance structure applications. Moreover, in the recently studies there have been many of the research regarding structural materials as energy absorption tube has been introduced such as metal/matrix composites, new alloy metals and polymer composites which intended to evaluate the performance of these materials into circumstance in loading and impact characteristic. Therefore, this review article is trying to explore the research articles related to the effect of hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of hybridization effect for energy absorption tube, moreover the development for future potential as new hybrid composite fibre materials from the natural/synthetic fibres reinforced composite material in employing of high-performance energy absorption tube application is still less discover and highlighted. 展开更多
关键词 ENERGY absorption tube HYBRID composites COLLAPSE behavior CRASHWORTHINESS
在线阅读 下载PDF
Comparison of three processing methods for laminated bamboo timber production 被引量:2
4
作者 Edi Suhaimi Bakar Muhammad Nadzim Mohd Nazip +1 位作者 Rogerson Anokye Lee Seng Hua 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第1期363-369,共7页
Three processing techniques, split-squaring(SS),V-grooving(VG), and split-edging(SE), were evaluated and compared in terms of their processing time and recovery. Semantan bamboo(Gigantochloa scortechinii Gamble) was u... Three processing techniques, split-squaring(SS),V-grooving(VG), and split-edging(SE), were evaluated and compared in terms of their processing time and recovery. Semantan bamboo(Gigantochloa scortechinii Gamble) was used as a raw material and the results showed that the VG-method required the longest processing time(32.1 min), followed by the SS-method(18.2 min), and the SE-method(17.9 min). However, the VG-method showed the highest recovery(82.0%) compared to the SS-method and SE-method, 31.0 and 49.4%, respectively. When both processing time and recovery factors were combined with the same weighing factor, the highest value was recorded with the VG-method(49.1), while the SE-method had values of 31.1 and the SS-method 12.8. The results suggest that the VG-method is the best option. However, the V-grooving machine is still a prototype and therefore the SE-method could be an alternative option until the improved V-grooving machine is available. 展开更多
关键词 BAMBOO CULM LAMINATED BAMBOO timber Vgrooving METHOD Split-squaring METHOD Split-edging METHOD
在线阅读 下载PDF
Effect of Fiber Loadings and Treatment on Dynamic Mechanical, Thermal and Flammability Properties of Pineapple Leaf Fiber and Kenaf Phenolic Composites 被引量:6
5
作者 M.Asim M.Jawaid +1 位作者 M.Nasir N.Saba 《Journal of Renewable Materials》 SCIE 2018年第4期383-393,共11页
This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage mod... This study deals with the analysis of dynamic mechanical,thermal and flammability properties of treated and untreated pineapple leaf fiber(PALF)and kenaf fiber(KF)phenolic composites.Results indicated that storage modulus was decreased for all composites with increases in temperature and pattern of slopes for all composites,having almost the same values of E′at glass transition temperature(Tg).The peak of the loss modulus of pure phenolic composites was shown to be much less.After the addition of kenaf/PALF,peaks were higher and shifted towards a high temperature.The Tan delta peak height was low for pure phenolic composites and maximum for 60%PALF phenolic composites.Cole-Cole analysis was carried out to understand the phase behavior of the composite samples.Thermogravimetric analysis(TGA)results indicated that pure phenolic composites have better thermal stability than PALF and kenaf phenolic composites.Vertical and horizontal UL-94 tests were conducted and showed pure phenolic resin is highly fire resistant.The overall results showed that treated KF composites enhanced the dynamic mechanical and thermal properties among all PALF/KF composites. 展开更多
关键词 Pineapple leaf FIBER KENAF FIBER PHENOLIC resin DYNAMIC MECHANICAL analysis thermogravimetric analysis FLAMMABILITY
在线阅读 下载PDF
Conceptual design of automobile engine rubber mounting composite using TRIZ-Morphological chart-analytic network process technique 被引量:11
6
作者 A.M.Noor Azammi S.M.Sapuan +1 位作者 M.R.Ishak Mohamed T.H.Sultan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期268-277,共10页
An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments envi... An engine rubber mounting is one of the important parts of a vehicle. It is a function to isolate or absorb and to reduce vibration to the vehicle body thus to the passenger itself. Due to the engine compartments environment such as heat and massive vibration due to road conditions, the engine rubber mountings lifespan has been reduced. Thus several studies have been conducted to upgrade the material lifespan to make it more reliable and better engine mounting components. This paper presents the conceptual design of kenaf fiber polymer as automotive engine rubber mounting composites using the integration of Theory of Inventive Problem Solving(TRIZ). In this early stage, the solution is generated using 40 inventive principles and TRIZ contradiction method. The solution parameter for the specific design character is the selected using the morphological chart to develop a systematic conceptual design for the component. Four(4) innovative design concepts were produced and Analytic Network Process(ANP)methods were utilized to perform the multi-criteria decision-making process of selecting the best concept design for the polymer composite engine rubber mounting component. 展开更多
关键词 TRIZ ANP MORPHOLOGICAL Automotive composites component Engine rubber COMPOSITE MOUNTING
在线阅读 下载PDF
Recent applications of carbon-based composites in defence industry: A review 被引量:11
7
作者 M.M.Harussani S.M.Sapuan +2 位作者 Gohar Nadeem Tahrim Rafin W.Kirubaanand 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1281-1300,共20页
Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and m... Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing. 展开更多
关键词 Carbon materials CHAR CARBON CNT GRAPHENE Composite Defence technology
在线阅读 下载PDF
Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites 被引量:5
8
作者 Ahmad Safwan Mohammad Jawaid +1 位作者 Mohamed T.H.Sultan Azman Hassan 《Journal of Renewable Materials》 SCIE 2018年第5期529-535,共7页
The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of... The application of natural fibers as reinforcement in composite material has increased due to environmental concerns,low cost,degradability and health concerns.The purpose of this study is to identify the best type of bamboo fibers to be used as reinforcement for kenaf(K)/bamboo hybrid composite.There were three types of bamboo fibers evaluated in this study which include bamboo mat(B),bamboo fabric(BF)and bamboo powder(BP).Chemical composition of B,BF,BP and K fibers were analyzed in this study.The effect of different types of bamboo fibers on tensile,impact,and morphological properties were investigated.The B/epoxy composites displayed the highest tensile strength(53.03 MPa)while K/epoxy composite had the highest tensile modulus(4.71 GPa).Scanning electron micrographs of B/epoxy composites displayed better fiber/matrix interfacial bonding in comparison to other studied composites.Results showed that impact strength of BF-based composite was highest(45.70 J/m).In conclusion,the tensile strength of B/epoxy composite is superior to the other bamboo reinforced composites and will be further evaluated in the next study. 展开更多
关键词 COMPOSITE KENAF BAMBOO natural fiber polymer composite tensile properties impact properties morphological properties
在线阅读 下载PDF
Organo-silane compounds in medium density fiberboard:physical and mechanical properties 被引量:2
9
作者 Hamid Reza Taghiyari Ali Karimi Paridah Md.Tahir 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期495-500,共6页
We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,5... We studied the effects of nanoparticles of organo-silane(NOS) compounds in the size range of20–80 nm on physical and mechanical properties in medium density fiberboard,and used NOS at four consumption levels of 0,50,100,and 150 g kg-1dry wood fibers.Density of all treatments was kept constant at 0.67 g cm-3.The water-repellent property of organo-silane significantly reduced water absorption(WA) and thickness swelling but mechanical properties declined due to the reduced proportion of wood-fiber as organo-silane was added to the matrix:the compression ratio of MDF panels and the integrity among wood-fibers both declined,resulting in reduced mechanical properties.We recommend use of 50 g of NOS/kg wood-fiber to improve WA and thickness swelling while retaining acceptable mechanical properties. 展开更多
关键词 Composite-board Medium-density fiberboard(MDF) NANOTECHNOLOGY Physical and mechanical properties Water-repellant Organo-silane
在线阅读 下载PDF
Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application 被引量:9
10
作者 R.YAH AYA S.M.SAPUAN +2 位作者 M.JAWAID Z.LEMAN E.S.ZAINUDIN 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第1期52-58,共7页
This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength o... This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties. 展开更多
关键词 芳纶复合材料 材料力学性能 纤维取向 红麻 应用 剥落 编织复合材料 扫描电子显微镜
在线阅读 下载PDF
Crashworthiness performance of hybrid kenaf/glass fiber reinforced epoxy tube on winding orientation effect under quasi-static compression load 被引量:5
11
作者 A.B.M.Supian S.M.Sapuan +2 位作者 M.Y.M.Zuhri E.S.Zainudin H.H.Ya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第5期1051-1061,共11页
This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube.The specimens tested under quasi-static compression load involve of three winding parameters(q?30,45a... This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube.The specimens tested under quasi-static compression load involve of three winding parameters(q?30,45and 70)of hybrid kenaf/glass fiber reinforced epoxy and glass fiber reinforced epoxy as contrast specimen.The automated filament winding technique has been used in fabrication of hybrid and non-hybrid composite tube and crashworthiness performance was investigated experimentally.The effects of winding orientation on energy absorption capabilities and crashworthiness characteristic were investigated through quasi-static compression load and the result are compared with the glass fiber composite tube to justify the capability of hybrid natural/synthetic as energy absorption application.Hybridized samples proved to enhancing the progressive crushing capability as combination of local buckling,delaminate and brittle fracturing as progressive crushing modes.In the view of winding orientation aspect,the results of high winding orientation of hybrid composite tube elevated the crush load efficiency,specific energy absorption and energy absorption capability compared to glass composite tube(GFRP).The hybrid kenaf/glass composite tube with high winding orientation showed the best winding orientation to enhance the energy absorber characteristics as energy absorption application. 展开更多
关键词 composite LAMINATE WINDING
在线阅读 下载PDF
Conceptual design of oil palm fibre reinforced polymer hybrid composite automotive crash box using integrated approach 被引量:7
12
作者 N S B YUSOF S M SAPUAN +1 位作者 M T H SULTAN M JAWAID 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期64-75,共12页
A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morp... A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study. 展开更多
关键词 conceptual design automotive crash box hybrid method concept selection method
在线阅读 下载PDF
Physical and damping properties of kenaf fibre filled natural rubber/thermoplastic polyurethane composites 被引量:4
13
作者 A.M.Noor Azammi S.M.Sapuan +1 位作者 Mohamad R.Ishak Mohamed T.H.Sultan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期29-34,共6页
The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/ther... The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature. 展开更多
关键词 KENAF fiber ALKALINE treatment THERMOPLASTIC POLYURETHANE Natural rubber Dynamic mechanical analysis
在线阅读 下载PDF
MECHANICAL PROPERTIES OF HYBRID GLASS/SUGAR PALM FIBRE REINFORCED UNSATURATED POLYESTER COMPOSITES 被引量:3
14
作者 S.M.Sapuan H.Y.Lok +1 位作者 M.R.Ishak S.Misri 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第10期1394-1403,共10页
A research has been carried out to investigate the mechanical properties of composites made by hybridizing sugar palm fibre (Arenga pinnata) with glass fibre into an unsaturated polyester matrix. Hybrid composites o... A research has been carried out to investigate the mechanical properties of composites made by hybridizing sugar palm fibre (Arenga pinnata) with glass fibre into an unsaturated polyester matrix. Hybrid composites of glass/sugar palm fibre were fabricated in different weight ratios of strand mat glass fibres : sugar palm fibres 4:0, 4:1, 4:2, 4:3, 4:4, and 0:4. The hybrid effects of glass and sugar palm fibre on tensile, flexural and impact properties of the composites were evaluated according to ASTM D5083, ASTM D790 and ASTM D256 respectively. Results have been established that properties of hybrid glass/sugar palm composites such as tensile strength, tensile modulus, elongation at break, toughness, flexural strength, flexural modulus and impact strength are a function of fibre content. The failure mechanism and the adhesion between fibres/matrix were studied by observing the scanning electron micrographs of impact fracture samples. In general, the incorporation of both fibres into unsaturated polyester matrix shows a regular trend of increase in the mechanical properties. 展开更多
关键词 Tensile test Flexural test Impact test Hybrid composite Sugar palm fibre.
原文传递
Manufacturing Process Selection of “Green” Oil Palm Natural Fiber Reinforced Polyurethane Composites Using Hybrid TEA Criteria Requirement and AHP Method for Automotive Crash Box 被引量:2
15
作者 N.S.B.Yusof S.M.Sapuan +1 位作者 M.T.H.Sultan M.Jawaid 《Journal of Renewable Materials》 SCIE EI 2020年第6期647-660,共14页
In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist o... In this study,the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials.This paper introduces an approach consist of technical aspects(T),the economic point of view(E)and availability(A),and it’s also called as TEA requirement.This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage.In this study,the TEA requirement will integrate with the analytical hierarchy process(AHP)to assist decision makers or manufacturing engineers in determining the most appropriate manufacturing process to be employed in the manufacture of a composite automotive crash box(ACB)at the early stage of the product development process.It is obvious that a major challenge in the manufacturing selection process is lack of information regarding manufacturing of ACB using natural fibre composite(NFC).There have been no previous studies that examined ranking manufacturability processes in terms of their suitability.Therefore,the TEA-AHP hybrid method was introduced to provide unprejudiced criteria-ranking selection prior to evaluation of pairwise comparisons.At the end of this study,the pulforming process was selected as the best manufacturing process for fabrication of the ACB structural component. 展开更多
关键词 Manufacturing process selection automotive crash box natural fibre composites TEA requirement
在线阅读 下载PDF
Conceptual Design of Natural Fiber Composites as a Side-Door Impact Beam Using Hybrid Approach 被引量:2
16
作者 M.A.Shaharuzaman S.M.Sapuan +1 位作者 M.R.Mansor M.Y.M.Zuhri 《Journal of Renewable Materials》 SCIE EI 2020年第5期549-563,共15页
This paper presents the conceptual design stage in the product development process of a natural fiber composites of the side-door impact beam,which starts from idea generation to the selection of the best design conce... This paper presents the conceptual design stage in the product development process of a natural fiber composites of the side-door impact beam,which starts from idea generation to the selection of the best design concept.This paper also demonstrates the use of the integrated Theory of Inventive Problem Solving(Function-Oriented Search)(TRIZ(FOS))and Biomimetics method,as well as the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The aim of this study was to generate design concepts that were inspired by nature and to select the best design concept for the composite side-door impact beam.Subsequently,eight design concepts were generated using the TRIZ(FOS)-Biomimetics method and finite element analysis were used to analyse their performance and weight criteria using ANSYS software.VIKOR method was used as the multiple criteria decision making tools to compare their performances,weight and cost criteria.As a result,design concepts B-03 and C-02 were ranked as the first and second best,with VIKOR value of 0.0156 and 0.1178,respectively,which satisfied the conditions in VIKOR method.This paper shows that the integrated method of TRIZ(FOS)-Biomimetics and VIKOR can assist researchers and engineers in developing designs that are inspired by nature,as well as in selecting the best design concept using a systematic strategy and justified solutions during the conceptual design stage. 展开更多
关键词 Theory of inventive problem solving TRIZ(FOS) biomimetics VIseKriterijumska Optimizacija I Kompromisno Resenje VIKOR side-door impact beam
在线阅读 下载PDF
Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites:Effect of Silane Treatment and Fiber Loading 被引量:1
17
作者 A.Atiqah M.Jawaid +1 位作者 S.M.Sapuan M.R.Ishak 《Journal of Renewable Materials》 SCIE 2018年第5期477-492,共16页
The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loadin... The aim of the present study was to develop sugar palm fiber(SPF)reinforced thermoplastic polyurethane(TPU)composites and to investigate the effects of fiber surface modification by 2%silane treatment and fiber loading(0,10,20,30,40 and 50 wt%)on the mechanical and thermal properties of the obtained composites.Surface treatment was employed to improve the fiber-matrix interface,which was expected to boost the mechanical strength of the composites,in terms of tensile,flexural and impact properties.Thermal properties were also investigated by thermal gravimetric analysis(TGA)and dynamic mechanical analysis(DMA)to assess the thermal stability of the developed composites.Furthermore,scanning electron microscopy(SEM)was used to study the tensile fracture samples of composites with a view towards evaluating the effects of fiber surface treatments on the fiber/matrix interfacial bonding.The findings of this study reveal that the silane treatment has determined good bonding and linkage of the cellulose fiber to the TPU matrix,hence contributing to enhanced mechanical and thermal properties of the composites.The composite formulation with 40 wt%sugar palm fiber loading showed optimum values such as 17.22 MPa for tensile,13.96 MPa for flexural,and 15.47 kJ/m^2 for impact strength.Moreover,the formulations with higher fiber content exhibited satisfactory values of storage modulus and thermal degradation,while their good interfacial adhesion was evidenced by SEM images. 展开更多
关键词 Sugar palm fibers silane treatment thermoplastic polyurethane sugar palm fiber-reinforced composites mechanical properties thermo-mechanical properties
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部