Nowadays, the needs and requirements to avoid infections during surgical operations, require to be more imaginative than ever. The one-use textiles substrates that are used in hospitals can be, also, a way to transpor...Nowadays, the needs and requirements to avoid infections during surgical operations, require to be more imaginative than ever. The one-use textiles substrates that are used in hospitals can be, also, a way to transport the antibacterial effect around the own building. This is the main objective of this work;to use clothes and textiles surfaces as antibacterial systems using natural components. Microencapsulation has shown in several occasions the effectivity to protect and vehiculize active principles that can be used for medical treatments. In this case, essential oils have been used as antimicrobial agent, that when combined with shell polymers based on Chitosan of different molecular weight distribution and Arabic gum, allows them to act against Gram (+) and Gram (−) bacteria. The study of the efficiency of all the samples made gave a high value due to its character similar to hydrogels, while the determination of solids was higher when it was a question of samples made with a low molecular weight. The essential oil used has a very volatile character formed by more than 40 components and with the help of FT-IR and TGA it has been possible to corroborate that all its components were encapsulated. The impregnation of the different samples to the tissue was successful and allowed the antibacterial study to be carried out, which was carried out in duplicate on each sample and demonstrated that they have bacterial activity.展开更多
The fight against nosocomial infections in hospitals, has promoted the use of microencapsulated essential oils on medical wearing uniforms. These types of microcapsules can be improved with the use of antimicrobial po...The fight against nosocomial infections in hospitals, has promoted the use of microencapsulated essential oils on medical wearing uniforms. These types of microcapsules can be improved with the use of antimicrobial polymers in the shell structure. Chitosan is one of the most used biopolymers and the effectiveness of the treatment can be increased with the combination of different molecular weight chains of chitosan. This modification in the composition of shell structure allows controlling the rate of hydrolysis and, therefore the amount of its cationic form. The main objective of this work is to define a methodology to get microcapsules with different shell compositions, using surfactants as stabilizers in their first step. Once they have been obtained, these microcapsules will be fixed into textile substrates with the objective to use these tissues as surgical and medical clothes to spread the antibacterial effect, in sanitary staff, as well as in the own patient. In the process of microencapsulation the molecular weight distribution of polymers, influences strongly the delivery mechanisms of the active principle, as well as the chemical characteristics of the textile substrate used in every case. In this work, several chitosan biopolymers have been checked. Structural changes in the stabilization first step and the influence of the cross-linking extension have been related with the final antibacterial effect when fixed on cotton substrates.展开更多
文摘Nowadays, the needs and requirements to avoid infections during surgical operations, require to be more imaginative than ever. The one-use textiles substrates that are used in hospitals can be, also, a way to transport the antibacterial effect around the own building. This is the main objective of this work;to use clothes and textiles surfaces as antibacterial systems using natural components. Microencapsulation has shown in several occasions the effectivity to protect and vehiculize active principles that can be used for medical treatments. In this case, essential oils have been used as antimicrobial agent, that when combined with shell polymers based on Chitosan of different molecular weight distribution and Arabic gum, allows them to act against Gram (+) and Gram (−) bacteria. The study of the efficiency of all the samples made gave a high value due to its character similar to hydrogels, while the determination of solids was higher when it was a question of samples made with a low molecular weight. The essential oil used has a very volatile character formed by more than 40 components and with the help of FT-IR and TGA it has been possible to corroborate that all its components were encapsulated. The impregnation of the different samples to the tissue was successful and allowed the antibacterial study to be carried out, which was carried out in duplicate on each sample and demonstrated that they have bacterial activity.
文摘The fight against nosocomial infections in hospitals, has promoted the use of microencapsulated essential oils on medical wearing uniforms. These types of microcapsules can be improved with the use of antimicrobial polymers in the shell structure. Chitosan is one of the most used biopolymers and the effectiveness of the treatment can be increased with the combination of different molecular weight chains of chitosan. This modification in the composition of shell structure allows controlling the rate of hydrolysis and, therefore the amount of its cationic form. The main objective of this work is to define a methodology to get microcapsules with different shell compositions, using surfactants as stabilizers in their first step. Once they have been obtained, these microcapsules will be fixed into textile substrates with the objective to use these tissues as surgical and medical clothes to spread the antibacterial effect, in sanitary staff, as well as in the own patient. In the process of microencapsulation the molecular weight distribution of polymers, influences strongly the delivery mechanisms of the active principle, as well as the chemical characteristics of the textile substrate used in every case. In this work, several chitosan biopolymers have been checked. Structural changes in the stabilization first step and the influence of the cross-linking extension have been related with the final antibacterial effect when fixed on cotton substrates.