期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Antioxidant and lipoxygenase inhibitory properties of a novel flavonoid from Pistacia chinensis Bunge and its molecular docking analysis
1
作者 Abdur Rauf Zuneera Akram +6 位作者 Naveed Muhammad Najla AlMasoud Taghrid Saad Alomar Saima Naz Abdul Wadood Chandni Hayat Marcello Iriti 《Traditional Medicine Research》 2025年第2期30-36,共7页
Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and ... Background:Pistacia chinensis Bunge has been traditionally used to manage various conditions,including asthma,pain,inflammation,hepatoprotection,and diabetes.The study was conducted to investigate the antioxidant and anti-lipoxygenase(LOX)properties of the isolated compound 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one from Pistacia chinensis.Methods:LOX assay and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl(DPPH)assay were performed.Molecular docking studies were conducted using a molecular operating environment.Results:The LOX assay revealed significant inhibitory effects at 0.2µM concentration,with an IC50 value of 37.80µM.The antioxidant effect demonstrated dose-dependency across 5 to 100µg/mL concentrations,reaching 93.09%at 100µg/mL,comparable to ascorbic acid’s 95.43%effect.Molecular docking studies highlighted strong interactions with the lipoxygenase enzyme,presenting an excellent docking score of-10.98 kcal/mol.Conclusion:These findings provide valuable insights into Pistacia chinensis’chemical components and biological effects,reinforcing its traditional medicinal applications. 展开更多
关键词 Pistacia chinensis Bunge ANTIOXIDANT DPPH assay antilipoxygenase docking analysis
暂未订购
Tailoring sub-5 nm Fe-doped CeO_(2)nanocrystals within confined spaces to boost photocatalytic hydrogen evolution under visible light
2
作者 Giuseppina Iervolino Olimpia Tammaro +4 位作者 Marco Fontana Bruno Masenelli Anne D.Lamirand Vincenzo Vaiano Serena Esposito 《Journal of Energy Chemistry》 2025年第2期263-277,I0007,共16页
This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production fr... This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes. 展开更多
关键词 Sub-5nm Fe-doped CeO_(2) Hydrogen evolution Photocatalysis Visible light Reverse micelles Mesoporous CeO_(2)
在线阅读 下载PDF
Frequency multiplexed photothermal correlation tomography for non-destructive evaluation of manufactured materials
3
作者 Pengfei Zhu Rongbang Wang +6 位作者 Koneswaran Sivagurunathan Stefano Sfarra Fabrizio Sarasini Clemente Ibarra-Castanedo Xavier Maldague Hai Zhang Andreas Mandelis 《International Journal of Extreme Manufacturing》 2025年第3期533-546,共14页
Infrared thermography has been widely applied in real industrial inspection of aerospace,energy management systems,engines,and electric systems.However,two-dimensional imaging modality limits its development.Here,a te... Infrared thermography has been widely applied in real industrial inspection of aerospace,energy management systems,engines,and electric systems.However,two-dimensional imaging modality limits its development.Here,a technique named frequency multiplexed photothermal correlation tomography(FM-PCT)was developed to enable non-destructive and contactless cross-sectional imaging for manufactured material evaluation and characterization.By combining advantages of photothermal tomography and pulsed thermography,FM-PCT facilitates the generation of three-dimensional thermal images through temporal superposition(stacking)of two-dimensional images from sequential subsurface depths.FM-PCT image processing involves pulsed excitation signals to which frequency delay and matched filtering techniques are applied.Major features of FM-PCT are high-resolution three-dimensional tomographic imaging under low camera frame-rate conditions with self-correcting capability for diffusion(blurring)correction of subsurface images due to cross-correlation processing of individual frequencies in the Fourier decomposition spectrum of the excitation pulse.Furthermore,FM-PCT extends truncated-correlation photothermal coherence tomography from chirp and pulsed signals to more general linear heating sources.Lock-in thermography and x-ray computed tomography validation demonstrate that 3D FM-PCT imaging accurately reveals subsurface discontinuities/defects in solids despite the diffusive nature of thermal-wave imaging. 展开更多
关键词 photothermal coherence tomography nondestructive evaluation infrared thermography impact damage
在线阅读 下载PDF
3D-Printed Boron-Nitrogen Doped Carbon Electrodes for Sustainable Wastewater Treatment via MPECVD
4
作者 Iwona Kaczmarzyk Malgorzata Szopińska +7 位作者 Patryk Sokołowski Simona Sabbatini Gabriel Strugala Jacek Ryl Gianni Barucca Per Falas Robert Bogdanowicz Mattia Pierpaoli 《Nano-Micro Letters》 2025年第12期349-368,共20页
This study proposes a novel and sustainable method for fabricating 3D-printed carbon-based electrodes for electrochemical wastewater treatment.We prepared B,N-doped carbon electrodes with hierarchical porosity and a s... This study proposes a novel and sustainable method for fabricating 3D-printed carbon-based electrodes for electrochemical wastewater treatment.We prepared B,N-doped carbon electrodes with hierarchical porosity and a significantly enhanced surface area-to-volume ratio(up to 180%)compared to non-optimized analogues using a synergistic combination of 3D printing,phase inversion,and microwave plasma-enhanced chemical vapor deposition.This process allows the metal-free growth of vertically aligned carbon nanostructures directly onto polymer-derived substrates,resulting in a 20-fold increase in the electrochemically active surface area.Computational fluid dynamics simulations were used to improve mass transport and reduce pressure drop.Electrochemical characterization demonstrated that the optimized electrodes performed significantly better,achieving 4.7-,4-,and 6.5-fold increases in the degradation rates of atenolol,metoprolol,and propranolol,respectively,during electrochemical oxidation.These results highlight the efficacy of the integrated fabrication and simulation approach in producing high-performance electrodes for sustainable wastewater treatment applications. 展开更多
关键词 Carbon nanowall Phase inversion Microwave plasma-enhanced chemical vapor deposition Electrochemical oxidation Additive manufacturing
在线阅读 下载PDF
Lipoxygenase inhibitory potential of secondary metabolites isolated from Pistacia integerrima:a comprehensive in vitro analysis integrating molecular docking,ADMET and DFT studies
5
作者 Abdur Rauf Muhammad Umer Khan +6 位作者 Zuneera Akram Chaudhry Ahmed Shabbir Yahya Saleh Al-Awthan Omar Salem Bahattab Adil Abbas Hassan Mujawah Hassan A.Hemeg Marcello Iriti 《Traditional Medicine Research》 2025年第9期1-13,共13页
Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacol... Background:Pistacia integerrima,a cornerstone of traditional medicine,is renowned for its therapeutic applications against various health conditions,including cancer and hepatitis.This study investigates the pharmacological potential of bioactive compounds derived from Pistacia integerrima in inhibiting 5-lipoxygenase(5-LOX),a key enzyme implicated in inflammation and cancer progression.The current study aimed to evaluate the lipoxygenase inhibitory activity of bioactive compounds from Pistacia integerrima and assess their potential for therapeutic development in the context of inflammation and cancer treatment.Methods:Three major compounds-spinacetin(1),patuletin(2),and pistagremic acid(3)-were isolated from Pistacia integerrima and analyzed for their lipoxygenase inhibitory activity.Biochemical assays and molecular docking studies were performed to assess their effectiveness in inhibiting 5-LOX.Results:All three compounds demonstrated significant inhibition of lipoxygenase activity.Spinacetin(1)and patuletin(2)exhibited the most potent inhibitory effects,with IC_(50)values of 40.34μM and 45.04μM,respectively.Molecular docking studies revealed that patuletin(2)had the highest binding affinity(−7.717 kcal/mol)against 5-LOX,followed by spinacetin(1)with a binding affinity of−6.074 kcal/mol.In-depth in silico analysis highlighted the drug-likeness of spinacetin(1)and its favorable toxicological profile,suggesting its suitability for therapeutic development.Conclusion:The study demonstrates that compounds from Pistacia integerrima,particularly spinacetin and patuletin,have significant lipoxygenase inhibitory activity,with spinacetin showing promise as a lead candidate for lipoxygenase-targeted therapies.The findings reinforce the therapeutic relevance of Pistacia integerrima and suggest that its bioactive compounds may serve as safer,plant-based alternatives to conventional anti-inflammatory and anticancer treatments. 展开更多
关键词 Pistacia integerrim PHYTOCHEMICALS 5-LOX in silico study molecular docking ADMET
暂未订购
CO_(2) conversion to solar fuels and chemicals:Opening the new paths
6
作者 Gabriele Centi Claudio Ampelli 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期680-683,共4页
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems... This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective. 展开更多
关键词 Solar fuels Artificial leaf PEC devices PV-EC devices Cell engineering green H_(2) Chemicals from theair
在线阅读 下载PDF
Unravelling the ion transport and the interphase properties of a mixed olivine cathode for Na-ion battery
7
作者 Luca Minnetti Leonardo Sbrascini +3 位作者 Antunes Staffolani Vittorio Marangon Francesco Nobili Jusef Hassoun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期300-317,共18页
The replacement of Li by Na in an analogue battery to the commercial Li-ion one appears a sustainable strategy to overcome the several concerns triggered by the increased demand for the electrochemical energy storage.... The replacement of Li by Na in an analogue battery to the commercial Li-ion one appears a sustainable strategy to overcome the several concerns triggered by the increased demand for the electrochemical energy storage.However,the apparently simple change of the alkali metal represents a challenging step which requires notable and dedicated studies.Therefore,we investigate herein the features of a NaFe_(0.6)Mn_(0.4)PO_(4)(NFMP)cathode with triphylite structure achieved from the conversion of a LiFe_(0.6)Mn_(0.4)PO_(4)(LFMP)olivine for application in Na-ion battery.The work initially characterizes the structure,morphology and performances in sodium cell of NFMP,achieving a maximum capacity exceeding 100 mAh g^(−1)at a temperature of 55℃,adequate rate capability,and suitable retention confirmed by ex-situ measurements.Subsequently,the study compares in parallel key parameters of the NFMP and LFMP such as Na^(+)/Li^(+)ions diffusion,interfacial characteristics,and reaction mechanism in Na/Li cells using various electrochemical techniques.The data reveal that relatively limited modifications of NFMP chemistry,structure and morphology compared to LFMP greatly impact the reaction mechanism,kinetics and electrochemical features.These changes are ascribed to the different physical and chemical features of the two compounds,the slower mobility of Na^(+)with respect to Li^(+),and a more resistive electrode/electrolyte interphase of sodium compared with lithium.Relevantly,the study reveals analogue trends of the charge transfer resistance and the ion diffusion coefficient in NFMP and LFMP during the electrochemical process in half-cell.Hence,the NFMP achieved herein is suggested as a possible candidate for application in a low-cost,efficient,and environmentally friendly Na-ion battery. 展开更多
关键词 NaFe_(0.6)Mn_(0.4)PO_(4)NFMP Olivine Na-ion lon transport INTERPHASE
在线阅读 下载PDF
A novel 2D-GO@WS2 electrochemical platform for the determination of thiram fungicide
8
作者 Khouloud Abid Daniela Iannazzo +5 位作者 Consuelo Celesti Amani Khaskhoussi Antonino Foti Ramzi Maalej Pietro Giuseppe Gucciardi Giovanni Neri 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期226-236,共11页
In this paper,the determination of Thiram fungicide by a novel modified screen-printed carbon electrode(SPCE)fabricated modifying the working electrode(WE)with 2D-GO/WS2nanohybrid composites,is reported.Scanning elect... In this paper,the determination of Thiram fungicide by a novel modified screen-printed carbon electrode(SPCE)fabricated modifying the working electrode(WE)with 2D-GO/WS2nanohybrid composites,is reported.Scanning electron microscopy(SEM),Raman spectroscopy,and fluorescence analysis(PL)were used to reveal the morphological and microstructural characteristics of the 2D-GO/WS2 nanohybrids with different graphene oxide:tungsten disulphide(GO:WS_(2))ratio.Electrochemical characterization demonstrated that the 2D-WS2/GO nanohybrids having a GO:WS_(2)ratio=2:1 shows the highest electrocatalytic activity towards oxidation of Thiram.The developed sensor permits the quantification of Thiram in the linear range 0.083-0.33μM with a limit of detection(LOD)of 0.02μM,which is below the legal limits for this fungicide in drinking water or foods. 展开更多
关键词 WS_(2)nanosheets Graphene Oxide(GO) Electrochemical sensor Fungicides THIRAM
原文传递
Lithium-Metal Free Sulfur Battery Based on Waste Biomass Anode and Nano-Sized Li_(2)S Cathode
9
作者 Pejman Salimi Eleonora Venezia +6 位作者 Somayeh Taghavi Sebastiano Tieuli Lorenzo Carbone Mirko Prato Michela Signoretto Jianfeng Qiu Remo Proietti Zaccaria 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期39-47,共9页
The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a c... The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level. 展开更多
关键词 biochars ether-based electrolytes lithium sulfide lithium-metal free batteries superior cycling stability
在线阅读 下载PDF
One-Step to Prepare Lignin Based Fluorescent Nanoparticles with Excellent Radical Scavenging Activity
10
作者 Xujing Zhang Hatem Abushammala +4 位作者 Debora Puglia Binbao Lu Pengwu Xu Weijun Yang Piming Ma 《Journal of Renewable Materials》 EI CAS 2024年第5期895-908,共14页
Fluorescent nanomaterials have attracted much attention,due to their unique luminescent properties and promis-ing applications in biomedical areas.In this study,lignin basedfluorescent nanoparticles(LFNP)with high yiel... Fluorescent nanomaterials have attracted much attention,due to their unique luminescent properties and promis-ing applications in biomedical areas.In this study,lignin basedfluorescent nanoparticles(LFNP)with high yield(up to 32.4%)were prepared from lignin nanoparticles(LNP)by one-pot hydrothermal method with ethylene-diamine(EDA)and citric acid.Morphology and chemical structure of LFNP were investigated by SEM,FT-IR,and zeta potential,and it was found that the structure of LFNP changed with the increase of citric acid addition.LFNP showed the highestfluorescence intensity under UV excitation at wavelengths of 375–385 nm,with emis-sion wavelengths between 454–465 nm,and exhibited strong photoluminescence behavior.Meanwhile,with the increase of citric acid content,the energy gap(ΔE)gradually decreased from 3.87 to 3.14 eV,which corresponds to the gradual enhancement offluorescence performance.LFNP also exhibited excellent antioxidant activity,with DPPH free radical scavenging rate increased from 80.8%for LNP up to 96.7%for LFNP,confirming the great potential of these materials for application in biomedicine and cosmetic health care. 展开更多
关键词 LIGNIN fluorescent nanoparticles bioactivity photoluminescence mechanism
在线阅读 下载PDF
生物基聚合物PHBV和PLA复合材料在不同介质中的生物降解及其影响因素 被引量:4
11
作者 陈海燕 吴丰昌 +5 位作者 魏源 Andrea Corti Emo Chiellini 白英臣 冯伟莹 张琛 《中国环境科学》 EI CAS CSSCI CSCD 北大核心 2018年第7期2706-2713,共8页
传统工艺的塑料生产不仅依赖石油资源的持续开发利用,同时给环境造成了前所未有的压力,近年来生物基聚合物(聚(3-羟基-3-戊酸酯)-PHBV,聚乳酸-PLA)日渐成为传统石油基塑料的替代产品.本文采用呼吸测试手段,旨在揭示均质复合材料在不同... 传统工艺的塑料生产不仅依赖石油资源的持续开发利用,同时给环境造成了前所未有的压力,近年来生物基聚合物(聚(3-羟基-3-戊酸酯)-PHBV,聚乳酸-PLA)日渐成为传统石油基塑料的替代产品.本文采用呼吸测试手段,旨在揭示均质复合材料在不同环境介质(土壤、熟化堆肥、水体)条件下及有机添加剂(木质素),无机添加剂(蒙脱石)和天然有机物链增长剂(Joncryl)作用下的生物降解特征.结果表明:当链增长剂Joncryl添加量为5%时,对所有介质PHBV和PLA复合材料产生显著抑制作用.Joncryl添加量为0.2%时,未对所测样品的生物降解行为产生干扰作用.在熟化堆肥介质中,PLA复合材料比PHBV基质混合物的生物降解速率明显降低.有机木质纤维添加剂(榛子壳粉末)单独在聚合物中添加或者和链增长剂Joncryl以及非有机添加剂(Dellite72T)共同作用下都可促进PLA聚合物中各组分的相容连接性.实验结果表明,新型添加剂在不同介质中以二元或三元添加的方式对生物降解过程产生重要影响,该研究将为新型材料使用后的生物降解效应提供理论依据. 展开更多
关键词 生物基聚合物 不同生物介质 多元添加 生物降解 性能分析评估
在线阅读 下载PDF
Structure-activity relationship in Pd/CeO2 methane oxidation catalysts 被引量:7
12
作者 Sara Colussi Paolo Fornasiero Alessandro Trovarelli 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第6期938-950,共13页
Palladium based catalysts are the most active for methane oxidation. The tuning of their composition, structure and morphology at macro and nanoscale can alter significantly their catalytic behavior and robustness wit... Palladium based catalysts are the most active for methane oxidation. The tuning of their composition, structure and morphology at macro and nanoscale can alter significantly their catalytic behavior and robustness with a strong impact on their overall performances. Among the several combinations of supports and promoters that have been utilized, Pd/CeO2 has attracted a great attention due to its activity and durability coupled with the unusually high degree of interaction between Pd/Pd O and the support. This allows the creation of specific structural arrangements which profoundly impact on methane activation characteristics. Here we want to review the latest findings in this area, and particularly to envisage how the control(when possible) of Pd-CeO2 interaction at nanoscale can help in designing more robust methane oxidation catalysts. 展开更多
关键词 PALLADIUM CERIA Methane catalytic oxidation Pd-ceria interaction NANOSTRUCTURE
在线阅读 下载PDF
碳基催化剂:为开发下一代纳米工程催化材料开辟新方法(英文) 被引量:4
13
作者 Claudio Ampelli Siglinda Perathoner Gabriele Centi 《催化学报》 SCIE CAS CSCD 北大核心 2014年第6期783-791,共9页
This essay analyses some of the recent development in nanocarbons (carbon materials having a defined and controlled nano-scale dimension and functional properties which strongly depend on their nano-scale features and... This essay analyses some of the recent development in nanocarbons (carbon materials having a defined and controlled nano-scale dimension and functional properties which strongly depend on their nano-scale features and architecture), with reference to their use as advanced catalytic materials. It is remarked how their features open new possibilities for catalysis and that they represent a new class of catalytic materials. Although carbon is used from long time in catalysis as support and electrocatalytic applications, nanocarbons offer unconventional ways for their utilization and to address some of the new challenges deriving from moving to a more sustainable future. This essay comments how nanocarbons are a key element to develop next-generation catalytic materials, but remarking that this goal requires overcoming some of the actual limits in current research. Some aspects are discussed to give a glimpse on new directions and needs for R&D to progress in this direction. 展开更多
关键词 催化材料 催化剂 纳米工程 碳基 开发 纳米碳 纳米尺度 功能特性
在线阅读 下载PDF
A perspective on carbon materials for future energy application 被引量:17
14
作者 Dang Sheng Su Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期151-173,共23页
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou... Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions. 展开更多
关键词 NANOCARBON CNT GRAPHENE hybrid carbon materials sustainable energy energy storage and conversion solar cells Li-batteries supercapac-itors
在线阅读 下载PDF
Electrocatalytic conversion of CO_2 to liquid fuels using nanocarbon-based electrodes 被引量:6
15
作者 Chiara Genovese Claudio Ampelli +1 位作者 Siglinda Perathoner Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期202-213,共12页
Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell,... Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell, different from the typical electrochemical systems working in liquid phase, was developed. There are several advantages to work in gas phase, e.g. no need to recover the products from a liquid phase and no problems of CO2 solubility, etc. Operating under these conditions and using electrodes based on metal nanoparticles supported over carbon nanotube (CNT) type materials, long C-chain products (in particular isopropanol under optimized conditions, but also hydrocarbons up to C8-C9) were obtained from the reduction of CO2. Pt-CNT are more stable and give in some cases a higher productivity, but Fe-CNT, particular using N-doped carbon nanotubes, give excellent properties and are preferable to noble-metal-based electrocatalysts for the lower cost. The control of the localization of metal particles at the inner or outer surface of CNT is an importact factor for the product distribution. The nature of the nanocarbon substrate also plays a relevant role in enhancing the productivity and tuning the selectivity towards long C-chain products. The electrodes for the electrocatalytic conversion of CO2 are part of a photoelectrocatalytic (PEC) solar cell concept, aimed to develop knowledge for the new generation artificial leaf-type solar cells which can use sunlight and water to convert CO2 to fuels and chemicals. The CO2 reduction to liquid fuels by solar energy is a good attempt to introduce renewables into the existing energy and chemical infrastructures, having a higher energy density and easier transport/storage than other competing solutions (i.e. H2). 展开更多
关键词 CO2 conversion solar fuels CNT Fe nanoparticles NANOCARBON H2 production
在线阅读 下载PDF
合成氨工业催化剂的一种新型前躯体—维氏体 被引量:3
16
作者 N. Pernicone F. Ferrero +6 位作者 I. Rossetti L. Forni P. Canton P. Riello G. Fagherazzi M. Signoretto F. Pinna 《浙江工业大学学报》 CAS 2004年第2期123-130,共8页
关于合成氨铁系催化剂最佳氧化态前躯体相矛盾的实验结果推动了当前以维氏体和磁铁矿为母体的催化剂的比较研究。测定了两种催化剂的许多物理性质(密度、孔结构、晶相、还原速率、金属表面、磨耗量)和催化性能(动力学常数、耐热性)。证... 关于合成氨铁系催化剂最佳氧化态前躯体相矛盾的实验结果推动了当前以维氏体和磁铁矿为母体的催化剂的比较研究。测定了两种催化剂的许多物理性质(密度、孔结构、晶相、还原速率、金属表面、磨耗量)和催化性能(动力学常数、耐热性)。证明了以维氏体为母体的催化剂具有更高的活性,尤其是在低温下,除了在高转化率情况下之外,可以达到Ru/C催化剂的性能。本文讨论了以维氏体为母体的催化剂具有这种特性的可能原因,并且建议有必要对合成氨铁系催化剂现有统一的理论知识进行重新考虑。 展开更多
关键词 合成氨工业 维氏体催化剂 磁铁矿催化剂 前躯体 动力学常数 还原速率
在线阅读 下载PDF
Transforming catalysis to produce e‐fuels:Prospects and gaps 被引量:1
17
作者 Georgia Papanikolaou Gabriele Centi +1 位作者 Siglinda Perathoner Paola Lanzafame 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1194-1203,共10页
After short introducing the crucial role of e‐fuels to meet net‐zero emissions targets,this perspective paper discusses the differences between reactive catalysis(electro‐,photo‐and plasma‐catalysis,with focus on... After short introducing the crucial role of e‐fuels to meet net‐zero emissions targets,this perspective paper discusses the differences between reactive catalysis(electro‐,photo‐and plasma‐catalysis,with focus on the first for conciseness)and thermal catalysis used at most.The main point is to evidence that to progress in producing e‐fuels,the gap is not in terms of scaling‐up and pilot testing,but rather in the fundamental needs to turn the current approach and methodologies to develop reactive catalysis,including from a mechanistic perspective,to go beyond the current methods largely derived from thermal catalysis.Developing thus new fundamental bases to understand reactive catalysis is the challenge to accelerate the progress in this area to enable the potential role towards a sustainable net‐zero emissions future.Some novel aspects are highlighted,but the general aim is rather to stimulate discussion in rethinking catalysis from an alternative perspective. 展开更多
关键词 ELECTROCATALYSIS e‐Fuels Solar fuels Mechanistic understanding CATALYSIS CO_(2) NH3
在线阅读 下载PDF
Enhanced performance in the direct electrocatalytic synthesis of ammonia from N2 and H2O by an in-situ electrochemical activation of CNT-supported iron oxide nanoparticles 被引量:3
18
作者 Shiming Chen Siglinda Perathoner +4 位作者 Claudio Ampelli Hua Wei Salvatore Abate Bingsen Zhang Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期22-32,共11页
The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse ga... The direct electrocatalytic synthesis of ammonia from N2 and H2O by using renewable energy sources and ambient pressure/temperature operations is a breakthrough technology,which can reduce by over 90%the greenhouse gas emissions of this chemical and energy storage process.We report here an in-situ electrochemical activation method to prepare Fe2O3-CNT(iron oxide on carbon nanotubes)electrocatalysts for the direct ammonia synthesis from N2 and H2O.The in-situ electrochemical activation leads to a large increase of the ammonia formation rate and Faradaic efficiency which reach the surprising high values of 41.6μg mgcat^−1 h^−1 and 17%,respectively,for an in-situ activation of 3 h,among the highest values reported so far for non-precious metal catalysts that use a continuous-flow polymer-electrolytemembrane cell and gas-phase operations for the ammonia synthesis hemicell.The electrocatalyst was stable at least 12 h at the working conditions.Tests by switching N2 to Ar evidence that ammonia was formed from the gas-phase nitrogen.The analysis of the changes of reactivity and of the electrocatalyst characteristics as a function of the time of activation indicates a linear relationship between the ammonia formation rate and a specific XPS(X-ray-photoelectron spectroscopy)oxygen signal related to O2−in iron-oxide species.This results together with characterization data by TEM and XRD suggest that the iron species active in the direct and selective synthesis of ammonia is a maghemite-type iron oxide,and this transformation from the initial hematite is responsible for the in-situ enhancement of 3-4 times of the TOF(turnover frequency)and NH3 Faradaic efficiency.This transformation is likely related to the stabilization of the maghemite species at CNT defect sites,although for longer times of preactivation a sintering occurs with a loss of performances. 展开更多
关键词 Ammonia direct synthesis Electrochemical activation Heterogeneous catalysis Active sites N2 electrocatalytic conversion
在线阅读 下载PDF
Visible luminescence of lanthanide ions in Ca_3Sc_2Si_3O_(12) and Ca_3Y2Si_3O_(12) 被引量:1
19
作者 Fabio Piccinelli Adolfo Speghini +2 位作者 Gino Mariotto Laura Bovo Marco Bettinelli 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第4期555-559,共5页
The crystalline materials Ca3Sc2Si3O12 and Ca3Y2Si3O12 Were characterized by different crystal structures, as the fonmer is a cubic garnet, while the latter is an orthorhombic compound. We investigated the optical spe... The crystalline materials Ca3Sc2Si3O12 and Ca3Y2Si3O12 Were characterized by different crystal structures, as the fonmer is a cubic garnet, while the latter is an orthorhombic compound. We investigated the optical spectroscopy of these materials doped with several trivalent lanthanide ions and compared the results for the two hosts. PolycrystaUine samples were prepared by solid state reaction, both undoped and doped with the trivalent lanthanide ions Eu3+, Tb3+ and Sm3+. Emission, excitation and Raman spectra of these materials were measured at temperatures ranging from 300 to 10 K. The optical spectra were assigned and discussed, and the effects of the crystal structure of the host on the spectroscopic behaviour were addressed. The technological potential of these compounds in the field of optical materials and devices was discussed, 展开更多
关键词 LANTHANIDES LUMINESCENCE PHOSPHORS rare earths
在线阅读 下载PDF
Sensitivity of a solid Eu(Ⅲ) complex towards acetonitrile vapor:Structural and spectroscopic characterization 被引量:1
20
作者 Fabio Piccinelli Veronica Paterlini +1 位作者 Magda Monari Marco Bettinelli 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第5期571-576,共6页
The Eu(Ⅲ)nitrate complex of the meso-N,N’-bis(2-pyridylmethylene)-1,2-(R,S)-cyclohexanediamine ligand was synthesized and characterized by single crystal and powder X-ray diffraction.The crystal lattice of the compl... The Eu(Ⅲ)nitrate complex of the meso-N,N’-bis(2-pyridylmethylene)-1,2-(R,S)-cyclohexanediamine ligand was synthesized and characterized by single crystal and powder X-ray diffraction.The crystal lattice of the complex is capable of absorbing and desorbing selectively acetonitrile molecules,at 293 K upon an acetonitrile vapor pressure of^0.1×10^5 Pa.This process,which is partially reversible,can be easily followed by both powder X-ray diffraction(P-XRD)and Eu(III)luminescence spectroscopy.The acetonitrile molecule,located in the outer coordination sphere of the metal ion,does not affect the radiative transition probability of 5 D0 level of Eu(Ⅲ)and also it does not activate further non-radiative channels from this level.On the other hand,this molecule is capable of affecting the energy position and intensities of the crystal field components of the 5 D0→7 F2 transition.The complex in solid form can be considered a promising material for the optical sensing of acetonitrile vapors. 展开更多
关键词 Eu(Ⅲ) X-ray diffraction Crystal structure Luminescence spectroscopy Rare earths
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部