BACKGROUND The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent.The gut microbiota contributes to colorectal carcinogenesis(CRC),as demonstrated with colibactin...BACKGROUND The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent.The gut microbiota contributes to colorectal carcinogenesis(CRC),as demonstrated with colibactin-producing Escherichia coli(CoPEC).AIM To evaluate the association between CoPEC prevalence and anxiety-and depressive-like behaviors with both preclinical and clinical approaches.METHODS Patients followed after a CRC surgery and for whom the prevalence of CoPEC has been investigated underwent a psychiatric interview.Results were compared according to the CoPEC colonization.In parallel C57BL6/J wild type mice and mice with a CRC susceptibility were chronically infected with a CoPEC strain.Their behavior was assessed using the Elevated Plus Maze test,the Forced Swimming Test and the Behavior recognition system PhenoTyper®.RESULTS In a limited cohort,all patients with CoPEC colonization presented with psychiatric disorders several years before cancer diagnosis,whereas only one patient(17%)without CoPEC did.This result was confirmed in C57BL6/J wildtype mice and in a CRC susceptibility mouse model(adenomatous polyposis colimultiple intestinal neoplasia/+).Mice exhibited a significant increase in anxiety-and depressive-like behaviors after chronic infection with a CoPEC strain.CONCLUSION This finding provides the first evidence that CoPEC infection can induce microbiota-gut-brain axis disturbances in addition to its procarcinogenic properties.展开更多
Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by l...Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.展开更多
Colloidal transport and deposition in porous media are complex processes that result from the interaction between hydrodynamics(velocity,pore geometry,etc.)and Derjaguin-Landau-Verwey-Overbeek(DLVO)forces(particle-par...Colloidal transport and deposition in porous media are complex processes that result from the interaction between hydrodynamics(velocity,pore geometry,etc.)and Derjaguin-Landau-Verwey-Overbeek(DLVO)forces(particle-particle and particle-surface).They have important implications for engineering applications involving the reinjection of a fluidinto a medium,such as geothermal energy.The investigation of permeability stability is critical to ensure the sustainability of activities.This work aims to study the clogging mechanisms in a rock-like porous medium using a microfluidicdevice.The pore-throat network distributions reveal that the micromodel geometry mimics real rock samples.The transport of a monodispersed suspension is studied at different concentrations.Image analysis,velocity fieldmodeling,and pressure drop measurement are used to assess preferential clogging sites and porous medium permeability reduction,respectively.Experiments have shown that retention sites are located around preferential flow paths with relatively high flow velocities.When clogged,the pore thresholds are the deposition zones that lead to a reduction in permeability.However,pore bodies may also constitute deposition zones.Interestingly,as the concentration of the suspension increases,the kinetics of the permeability reduction are delayed,and the clogging mechanisms,as well as the type of deposit,evolve.Finally,at very high concentrations,the effects of hydrodynamic stripping are more important.These observations emphasize the role of the porous medium geometry in colloidal transport and deposition and thus permeability reduction.展开更多
Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived ...Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived from moringa leaves and cocoa pod husks that can improve soil quality and plant growth. The experimental design consisted of completely randomized blocks in three repetitions. The experiment was carried out in five treatments: T0: no fertilization, T1: 100% cocoa pods, T2: 75% cocoa pods + 25% Moringa leaves;T3: 50% cocoa pods + 50% Moringa leaves;T4: 25% cocoa pods + 75% Moringa leaves;T5: 100% Moringa leaves. Three doses were applied: 1;2;4 kg/m2. The trial took place over three growing cycles. The results of the soil analysis compared to the control revealed a significant improvement in physicochemical parameters. Variation of pH from (6.1 to 7.2), calcium from (1.4 to 4.13), magnesium from (0.450 to 0.870), potassium from (0.096 to 0.365) cmol+/kg. Carbon and nitrogen were recorded (1.02% to 2.77%) and (0.12% to 2.56%) respectively. The CEC (cation exchange capacity) saw a clear improvement (4.2 to 9.03) cmol+/kg. Concerning the growth parameters, the control plants recorded an average height of (31.19 cm) while those that benefited from the treatments oscillated between (55.51 to 105.57 cm). In terms of production, the best yields are attributed to treatments T3 and T4 with (37.66 t/ha) and (51.176 t/ha) respectively. The T3 and T4 formulations could help improve the fertility of agricultural soils and the yield of market garden products such as eggplant.展开更多
The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is ess...The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is essential for enhancing the performance and durability of SOFCs.Accurate prediction of mechanical properties of porous electrode can be achieved by microscale finite element modeling based on three-dimensional(3D)microstructures,which requires expensive 3D tomography techniques and massive computational resources.In this study,we proposed a cost-effective alternative approach to access the mechanical properties of porous electrodes,with the elastic properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δc)athode serving as a case study.Firstly,a stochastic modeling was used to reconstruct 3D microstructures from two-dimensional(2D)cross-sections as an alternative to expensive tomography.Then,the discrete element method(DEM)was used to predict the elastic properties of porous ceramics based on the discretized 3D microstructures reconstructed by stochastic modeling.Based on 2D microstructure and the elastic properties calculated by the DEM modeling of the 3D reconstructed porous microstructures,a convolutional neural network(CNN)based deep learning model was built to predict the elastic properties rapidly from 2D microstructures.The proposed combined framework can be implemented with limited computational resources and provide a basis for rapid prediction of mechanical properties and parameter estimation for multiscale modeling of SOFCs.展开更多
Pollution from road traffic contributes significantly to air pollution through pollutants from exhaust emissions(gases and particles)and non-exhaust emissions(tire wear particles,brake wear particles and the resuspens...Pollution from road traffic contributes significantly to air pollution through pollutants from exhaust emissions(gases and particles)and non-exhaust emissions(tire wear particles,brake wear particles and the resuspension of road dust).This research examined the hazard of tire particles(TP)and in particular evaluated the effect of TP size on lung macrophages.TP were obtained by cryogenic grinding of a tire and subsequent sieving to obtain four groups of particles(TP70,TP30,TP15,TP5)of different sizes with average diameters of 107μm,55μm,22μm,and 6μm,respectively.A complete physicochemical characterization was performed to determine the size distribution,chemical composition and morphology of these particles.We then investigated the proinflammatory response,oxidative stress and cytotoxicity induced in RAW264.7 cells exposed to four different TP concentrations for 24 h.TP had no direct effect on cytotoxicity,nor did they increase reactive oxygen species(ROS)production in the cells.However,TP induced a significant and size-dependent proinflammatory effect,which was particularly pronounced with small particles.Moreover,this effect was concentration-dependent.展开更多
The chemical and electrochemical stability of lanthanide nickelates La2 NiO4+δ(LNO),Pr2 NiO4+δ(PNO)and their mixed compounds La(2-x)PrxNiO4+δ(LPNOs)with x=0.5,1 or 1.5 is reported.The aim is to promote these materi...The chemical and electrochemical stability of lanthanide nickelates La2 NiO4+δ(LNO),Pr2 NiO4+δ(PNO)and their mixed compounds La(2-x)PrxNiO4+δ(LPNOs)with x=0.5,1 or 1.5 is reported.The aim is to promote these materials as efficient electrodes for solid oxide fuel cell(SOFC)and/or solid oxide electrolysis cell(SOEC).La2 NiO4+δand La1.5Pr0.5NiO4+δcompounds are chemically very stable as powders over one month in the temperature range 600-800℃,while the other materials rich in praseodymium progressively decompose into various perovskite-deriving components with additional Pr6 O11.Despite their uneven properties,all these materials are quite efficient and sustainable as electrodes on top of gadolinium doped ceria(GDCBL)//yttrium doped zirconia(8 YSZ)electrolyte,for one month at 700℃without polarization.Under polarization(300 mA·cm-2),the electrochemical performances of LNO,PNO and La1.5Pr0.5NiO4+δ(LP5 NO)quickly degrade in SOFC mode,i.e.for the oxygen reduction reaction,while they show durability in SOEC mode,i.e.for the oxide oxidation reaction.展开更多
The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium spec...The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.展开更多
Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil...Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil feedstock(and to a minor extent from biomass);in consequence the present hydrogen gas on the market is containing non-negligible amounts of impurities that prevent its immediate usage in specialty chemistry or as an energy carrier in fuel cells, e.g. in transportation applications(cars, buses, trains, boats, etc.) that gradually spread on the planet. For these purposes, hydrogen must be of sufficient purity but also sufficiently compressed(at high pressures, typically 70 MPa), rendering purification and compression steps unavoidable in the hydrogen cycle. As shown in the first part of this contribution "Electrochemical hydrogen compression and purification versus competing technologies: Part I. pros and cons", electrochemical hydrogen compressors(EHCs), which enable both hydrogen purification and compression, exhibit many theoretical(thermodynamic) and practical(kinetics) advantages over their mechanical counterparts. However, in order to be competitive, EHCs must operate in very intensive conditions(high current density and low cell voltage) that can only be reached if their core materials, e.g. the membrane and the electrodes/electrocatalysts, are optimized. This contribution will particularly focus on the properties electrocatalysts must exhibit to be used in EHCs: they shall promote(very) fast hydrogen oxidation reaction(HOR) in presence of impurities, which implies that they are(very) tolerant to poisons as well. This consists of a prerequisite for the operation of the anode of an EHC used for the purification-compression of hydrogen, and the materials developed for poison-tolerance in the vast literature on low-temperature fuel cells, may not always satisfy these two criteria, as this contribution will review.展开更多
It is undisputed that hydrogen will play a great role in our future energetic mix, because it enables the storage of renewable electricity(power-to-H2) and the reversible conversion into electricity in fuel cell, not ...It is undisputed that hydrogen will play a great role in our future energetic mix, because it enables the storage of renewable electricity(power-to-H2) and the reversible conversion into electricity in fuel cell, not to speak of its wide use in the(petro)chemical industry. Whereas in these applications, pure hydrogen is required, today’s hydrogen production is still largely based on fossil fuels and can therefore not be considered pure. Therefore, purification of hydrogen is mandatory, at a large scale. In addition, hydrogen being the lightest gas, its volumetric energy content is well-below its competing fuels, unless it is compressed at high pressures(typically 70 MPa), making compression unavoidable as well. This contribution will detail the means available today for both purification and for compression of hydrogen. It will show that among the available technologies, the electrochemical hydrogen compressor(EHC), which also enables hydrogen purification, has numerous advantages compared to the classical technologies currently used at the industrial scale. EHC has their thermodynamic and operational advantages, but also their ease of use. However, the deployment of EHCs will be viable only if they reach sufficient performances, which implies some specifications that their base materials should stick to. The present contribution will detail these specifications.展开更多
A volume averaged columnar solidification model,which couples the flow,temperature and solute concentration fields,is applied to simulate experimental continuous casting cases with and without vertical electromagnetic...A volume averaged columnar solidification model,which couples the flow,temperature and solute concentration fields,is applied to simulate experimental continuous casting cases with and without vertical electromagnetic stirring(V-EMS).The calculated distribution of magnetic induction intensity and final macrosegregation maps are consistent with the experimental results.Calculation results reveal that the V-EMS promotes longitudinal melt flow,accelerates heat dissipation and solidification and finally reduces the central segregation of carbon.However,when V-EMS is applied,the solute distribution becomes asymmetric because the melt flow shows opposite directions between the near and far sides from stirrer.An obvious positive segregation band is observed at about 1/4 width of the billet near the stirrer in both calculated and experimental results.The position and degree of such positive segregation could be affected by installation height of stirrer,as demonstrated by additional simulation cases.展开更多
Niamey, the capital of Niger, has experienced continuous demographic growth (+4%), accompanied by rapid urban expansion that is insufficiently controlled. This growth, combined with the effects of climate change as we...Niamey, the capital of Niger, has experienced continuous demographic growth (+4%), accompanied by rapid urban expansion that is insufficiently controlled. This growth, combined with the effects of climate change as well as a drastic change in land use (urbanization of cultivated fields, deforestation of plateaus and erosion of slopes) disrupts the water cycle, thus leading to the superposition of three types of floods: 1) rain floods (monsoon period);2) river floods (Niger river);and 3) flooding caused by rising water table. In several neighbourhoods, the water table is now out in a sustainable manner and degrades already fragile sanitary conditions. This study aims to clarify the functioning of aquifers in the city of Niamey due to the combination of geological, geophysical and hydrogeological data. Hydrogeological investigations make it possible to identify, in areas flooded by the water table, a shallow aquifer with low capacitance (effective porosity of a few %) and low permeability (2 × 10<sup>-6</sup> to 1 × 10<sup>-4</sup> m/s), overlying at a level shallow clay (~10 m) and lying on the Precambrian base (schists, granites). This configuration limits flows and has led to the appearance of permanent pools created by the water table in the valley thalweg in and around the city. Thus, in Niamey, an increase of up to twenty to forty meters was observed between 1961 and 2021 with seasonal piezometric fluctuations of a pluri-metric order following the rainy season. Beyond the health impacts, this trajectory negatively impacts land and locally causes degradation or displacement of traffic axes. Containing the level of the water table appears to be essential in the long term for sustainable sanitation in the city of Niamey.展开更多
Projections of climate change are essential to guide sustainable development plans in the tropical Andean countries such as Peru. This study assessed the projections of precipitation and potential evaporation, rain er...Projections of climate change are essential to guide sustainable development plans in the tropical Andean countries such as Peru. This study assessed the projections of precipitation and potential evaporation, rain erosive potential, and precipitation concentration in the Mantaro River Basin, in the Peruvian Andes, which is important for agriculture and energy production in Peru. We assumed the Intergovernmental Panel on Climate Change (IPCC) AIB greenhouse gas emission scenario and simulated the global climate change by the HadCM3 global climate model. Due to the steepness of the mountain slopes and the narrowness of the river valley, this study uses the downscaling of the global model simulations by the regional Eta model down to 2o-km resolution. The downscaling projections show decrease in the monthly precipitation with respect to the baseline period, especially during the rainy season, between February and April, until the end of the 21st century. Meanwhile, a progressive increase in the monthly evaporation from the baseline period is projected. The Modified Fournier Index (MFI) shows a statistically significant downward trend in the Mantaro River Basin, whieh suggests a possible reduction in the rain erosive potential. The Precipitation Concentration Index (PCI) shows a statistically significant increasing trend, which indicates increasingly more irregular temporal distribution of precipitation towards the end of the century. The results of this study allow us to conclude that there should be a gradual increase in water deficit and precipitation concentration. Both changes can be negative for agriculture, power generation, and water supply in the Mantaro River Basin in Peru.展开更多
The present study focuses on the impacts of extreme drought and flooding situations in Amazonia, using level/discharge data from some rivers in the Amazon region as indicators of impacts. The last 10 years have featur...The present study focuses on the impacts of extreme drought and flooding situations in Amazonia, using level/discharge data from some rivers in the Amazon region as indicators of impacts. The last 10 years have featured various “once in a century” droughts and floods in the Amazon basin, which have affected human and natural systems in the region. We assess a history of such hazards based on river data, and discuss some of the observed impacts in terms of vulnerability of human and natural systems, as well as some of adaptation strategies implemented by regional and local governments to cope with them. A critical perspective of mitigation of drought and flood policies in Amazonia suggests that they have been mostly ineffective in reducing vulnerability for the majority of the population, constituting, perhaps, examples of maladaptation via the undermining of resilience.展开更多
This paper proposes an estimate of the stirring intensity needed to maintain an efficient segregation of impurities towards the liquid when crystallizing semiconductors such as silicon,with rapid solidification rates(...This paper proposes an estimate of the stirring intensity needed to maintain an efficient segregation of impurities towards the liquid when crystallizing semiconductors such as silicon,with rapid solidification rates(several cm/h).The method,valid far from stagnation points or detachments,is based on the properties of turbulent boundary layers,with a normal velocity of the liquid towards the solid/liquid interface due to solidification,that has the same effect as boundary layer suction in aeronautics.The transition between the diffusive regime(no segregation),and the convective regime(efficient segregation)occurs if the friction at the wall is greater than a threshold depending on the solidification rate.A chart is given to estimate the convecto-diffusive parameter from the ratio between stirring and solidification velocity,and the Reynolds number.展开更多
A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc...A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc in a model circuit breaker is studied by means of computational fluid dynamics(CFD)simulations and optical emission spectroscopy(OES)in this contribution.Experimental investigations are performed in carbon dioxide(CO2)at absolute filling pressures of 0.1 and 0.5 MPa.CFD simulations are carried out based on a model of the arcing zone including a consistent treatment of the radiation transport and the wall ablation.Carbon ion line radiation is analysed in the experiment using an optical path in the heating channel between the electrodes inside the nozzle system.The pressure value in the arc is estimated based on the line width-intensity dependence.Obtained values correspond to the measured pressure outside the arc.For the temperature profiles,a good agreement within the accuracy of the approaches is observed between the CFD simulations and the results of OES.展开更多
The introduction of tacrolimus in clinical practice has improved patient survival after organ transplant.However,despite the long use of tacrolimus in clinical practice,the best way to use this agent is still a matter...The introduction of tacrolimus in clinical practice has improved patient survival after organ transplant.However,despite the long use of tacrolimus in clinical practice,the best way to use this agent is still a matter of intense debate.The start of the genomic era has generated new research areas,such as pharmacogenetics,which studies the variability of drug response in relation to the genetic factors involved in the processes responsible for the pharmacokinetics and/or the action mechanism of a drug in the body.This variability seems to be correlated with the presence of genetic polymorphisms.Genotyping is an attractive option especially for the initiation of the dosing of tacrolimus;also,unlike phenotypic tests,the genotype is a stable characteristic that needs to be determined only once for any given gene.However,prospective clinical studies must show that genotype determination before transplantation allows for better use of a given drug and improves the safety and clinical efficacy of that medication.At present,research has been able to reliably show that the CYP3A5 genotype,but not the CYP3A4 or ABCB1 ones,can modify the pharmacokinetics of tacrolimus.However,it has not been possible to incontrovertibly show that the corresponding changes in the pharmacokinetic profile are linked with different patient outcomes regarding tacrolimus efficacy and toxicity.For these reasons,pharmacogenetics and individualized medicine remain a fascinating area for further study and may ultimately become the face of future medical practice and drug dosing.展开更多
The solution-treated Mg-4Y-4Sm-0.5Zr alloy was extruded at temperatures from 325℃ to 500℃.Dynamic recrystallization(DRX) completely occurs when the alloy is extruded at 350℃and above.The grains of the extruded allo...The solution-treated Mg-4Y-4Sm-0.5Zr alloy was extruded at temperatures from 325℃ to 500℃.Dynamic recrystallization(DRX) completely occurs when the alloy is extruded at 350℃and above.The grains of the extruded alloy are obviously refined by the occurrence of DRX.The average grain size of the extruded alloy increases with increasing the extrusion temperature,leading to a slight decrease of the ultimate tensile strength(UTS) and the yield strength(YS) .On the contrary,the UTS and YS of the extruded and aged alloy increase with increasing the extrusion temperature.Values of UTS of 400 MPa,YS larger than 300 MPa and elongation(EL) of 7%are achieved after extrusion at 400℃ and ageing at 200℃ for 16 h.Both grain refinement and precipitation are efficient strengthening mechanisms for the Mg-4Y-4Sm-0.5Zr alloy.展开更多
基金Supported by the French patient’s association against cancer(ligue contre le cancer),No.00001005238the French government IDEXISITE initiative,No.16-IDEX-0001-CAP 20-25+2 种基金CPER(Nex-N-Mob)the Auvergne-Rhône-Alpes region(“Thématiquesémergentes”),No.AV0004111the Ministère de l'Enseignement supérieur,de la Recherche et de l'Innovation,INSERM,University of Clermont Auvergne[UMR1071,UMR1107],INRAE[USC-1382].
文摘BACKGROUND The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent.The gut microbiota contributes to colorectal carcinogenesis(CRC),as demonstrated with colibactin-producing Escherichia coli(CoPEC).AIM To evaluate the association between CoPEC prevalence and anxiety-and depressive-like behaviors with both preclinical and clinical approaches.METHODS Patients followed after a CRC surgery and for whom the prevalence of CoPEC has been investigated underwent a psychiatric interview.Results were compared according to the CoPEC colonization.In parallel C57BL6/J wild type mice and mice with a CRC susceptibility were chronically infected with a CoPEC strain.Their behavior was assessed using the Elevated Plus Maze test,the Forced Swimming Test and the Behavior recognition system PhenoTyper®.RESULTS In a limited cohort,all patients with CoPEC colonization presented with psychiatric disorders several years before cancer diagnosis,whereas only one patient(17%)without CoPEC did.This result was confirmed in C57BL6/J wildtype mice and in a CRC susceptibility mouse model(adenomatous polyposis colimultiple intestinal neoplasia/+).Mice exhibited a significant increase in anxiety-and depressive-like behaviors after chronic infection with a CoPEC strain.CONCLUSION This finding provides the first evidence that CoPEC infection can induce microbiota-gut-brain axis disturbances in addition to its procarcinogenic properties.
基金supported by the NSFC (42374204, 42004143,42364012)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences (Grant No.YSBR-018)+3 种基金the Scientific Projects of Hainan Province(KJRC2023C05, ZDYF2021GXJS040)the Innovational Fund for Scientific and Technological Personnel of Hainan Provincethe Chinese Meridian ProjectPandeng Program of National Space Science Center,Chinese Academy of Sciences
文摘Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.
文摘Colloidal transport and deposition in porous media are complex processes that result from the interaction between hydrodynamics(velocity,pore geometry,etc.)and Derjaguin-Landau-Verwey-Overbeek(DLVO)forces(particle-particle and particle-surface).They have important implications for engineering applications involving the reinjection of a fluidinto a medium,such as geothermal energy.The investigation of permeability stability is critical to ensure the sustainability of activities.This work aims to study the clogging mechanisms in a rock-like porous medium using a microfluidicdevice.The pore-throat network distributions reveal that the micromodel geometry mimics real rock samples.The transport of a monodispersed suspension is studied at different concentrations.Image analysis,velocity fieldmodeling,and pressure drop measurement are used to assess preferential clogging sites and porous medium permeability reduction,respectively.Experiments have shown that retention sites are located around preferential flow paths with relatively high flow velocities.When clogged,the pore thresholds are the deposition zones that lead to a reduction in permeability.However,pore bodies may also constitute deposition zones.Interestingly,as the concentration of the suspension increases,the kinetics of the permeability reduction are delayed,and the clogging mechanisms,as well as the type of deposit,evolve.Finally,at very high concentrations,the effects of hydrodynamic stripping are more important.These observations emphasize the role of the porous medium geometry in colloidal transport and deposition and thus permeability reduction.
文摘Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived from moringa leaves and cocoa pod husks that can improve soil quality and plant growth. The experimental design consisted of completely randomized blocks in three repetitions. The experiment was carried out in five treatments: T0: no fertilization, T1: 100% cocoa pods, T2: 75% cocoa pods + 25% Moringa leaves;T3: 50% cocoa pods + 50% Moringa leaves;T4: 25% cocoa pods + 75% Moringa leaves;T5: 100% Moringa leaves. Three doses were applied: 1;2;4 kg/m2. The trial took place over three growing cycles. The results of the soil analysis compared to the control revealed a significant improvement in physicochemical parameters. Variation of pH from (6.1 to 7.2), calcium from (1.4 to 4.13), magnesium from (0.450 to 0.870), potassium from (0.096 to 0.365) cmol+/kg. Carbon and nitrogen were recorded (1.02% to 2.77%) and (0.12% to 2.56%) respectively. The CEC (cation exchange capacity) saw a clear improvement (4.2 to 9.03) cmol+/kg. Concerning the growth parameters, the control plants recorded an average height of (31.19 cm) while those that benefited from the treatments oscillated between (55.51 to 105.57 cm). In terms of production, the best yields are attributed to treatments T3 and T4 with (37.66 t/ha) and (51.176 t/ha) respectively. The T3 and T4 formulations could help improve the fertility of agricultural soils and the yield of market garden products such as eggplant.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172104 and 11932005)the Talent Recruitment Project of Guangdong(2021QN02L892)+3 种基金the Stable Supporting Fund of Shenzhen(GXWD20231130153335002)the Shccig-Qinling Program(SMYJY202300140C)the program of Innovation Team in Universities and Colleges in Guangdong(2021KCXTD006)Development and Reform Commission of Shenzhen(XMHT20220103004).
文摘The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is essential for enhancing the performance and durability of SOFCs.Accurate prediction of mechanical properties of porous electrode can be achieved by microscale finite element modeling based on three-dimensional(3D)microstructures,which requires expensive 3D tomography techniques and massive computational resources.In this study,we proposed a cost-effective alternative approach to access the mechanical properties of porous electrodes,with the elastic properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δc)athode serving as a case study.Firstly,a stochastic modeling was used to reconstruct 3D microstructures from two-dimensional(2D)cross-sections as an alternative to expensive tomography.Then,the discrete element method(DEM)was used to predict the elastic properties of porous ceramics based on the discretized 3D microstructures reconstructed by stochastic modeling.Based on 2D microstructure and the elastic properties calculated by the DEM modeling of the 3D reconstructed porous microstructures,a convolutional neural network(CNN)based deep learning model was built to predict the elastic properties rapidly from 2D microstructures.The proposed combined framework can be implemented with limited computational resources and provide a basis for rapid prediction of mechanical properties and parameter estimation for multiscale modeling of SOFCs.
基金supported by the Ecole des Mines Saint-Etienne and the Agence de l’Environnement et de la Maitrise de l’Energie。
文摘Pollution from road traffic contributes significantly to air pollution through pollutants from exhaust emissions(gases and particles)and non-exhaust emissions(tire wear particles,brake wear particles and the resuspension of road dust).This research examined the hazard of tire particles(TP)and in particular evaluated the effect of TP size on lung macrophages.TP were obtained by cryogenic grinding of a tire and subsequent sieving to obtain four groups of particles(TP70,TP30,TP15,TP5)of different sizes with average diameters of 107μm,55μm,22μm,and 6μm,respectively.A complete physicochemical characterization was performed to determine the size distribution,chemical composition and morphology of these particles.We then investigated the proinflammatory response,oxidative stress and cytotoxicity induced in RAW264.7 cells exposed to four different TP concentrations for 24 h.TP had no direct effect on cytotoxicity,nor did they increase reactive oxygen species(ROS)production in the cells.However,TP induced a significant and size-dependent proinflammatory effect,which was particularly pronounced with small particles.Moreover,this effect was concentration-dependent.
基金PEREN project(reference:ANR-2011-PREG-016–05)the ECOREVE project(reference:ANR-18-CE05-0036-01)the Agence Nationale de la Recherche(A.N.R.,France)for supporting these scientific works and for the financial support。
文摘The chemical and electrochemical stability of lanthanide nickelates La2 NiO4+δ(LNO),Pr2 NiO4+δ(PNO)and their mixed compounds La(2-x)PrxNiO4+δ(LPNOs)with x=0.5,1 or 1.5 is reported.The aim is to promote these materials as efficient electrodes for solid oxide fuel cell(SOFC)and/or solid oxide electrolysis cell(SOEC).La2 NiO4+δand La1.5Pr0.5NiO4+δcompounds are chemically very stable as powders over one month in the temperature range 600-800℃,while the other materials rich in praseodymium progressively decompose into various perovskite-deriving components with additional Pr6 O11.Despite their uneven properties,all these materials are quite efficient and sustainable as electrodes on top of gadolinium doped ceria(GDCBL)//yttrium doped zirconia(8 YSZ)electrolyte,for one month at 700℃without polarization.Under polarization(300 mA·cm-2),the electrochemical performances of LNO,PNO and La1.5Pr0.5NiO4+δ(LP5 NO)quickly degrade in SOFC mode,i.e.for the oxygen reduction reaction,while they show durability in SOEC mode,i.e.for the oxide oxidation reaction.
基金financial support from the French National Research Agency(project ANR-17-CE05-0023)。
文摘The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.
基金The authors thank the Auvergne Rhone-Alpes region for the funding of the PhD thesis of Marine TregaroPart of the work has been performed within the framework of the Centre of Excellence of Multifunctional Architectured Materials“CEMAM”no.ANR-10-LABX-44-01Both MT and MR make their PhD in the frame of the Eco-Sesa project,funded by IDEX Universite Grenoble Alpes.
文摘Hydrogen will be at the basis of the World’s energy policy in forthcoming decades, owing to its decarbonized nature, at least when produced from renewables. For now, hydrogen is still essentially produced from fossil feedstock(and to a minor extent from biomass);in consequence the present hydrogen gas on the market is containing non-negligible amounts of impurities that prevent its immediate usage in specialty chemistry or as an energy carrier in fuel cells, e.g. in transportation applications(cars, buses, trains, boats, etc.) that gradually spread on the planet. For these purposes, hydrogen must be of sufficient purity but also sufficiently compressed(at high pressures, typically 70 MPa), rendering purification and compression steps unavoidable in the hydrogen cycle. As shown in the first part of this contribution "Electrochemical hydrogen compression and purification versus competing technologies: Part I. pros and cons", electrochemical hydrogen compressors(EHCs), which enable both hydrogen purification and compression, exhibit many theoretical(thermodynamic) and practical(kinetics) advantages over their mechanical counterparts. However, in order to be competitive, EHCs must operate in very intensive conditions(high current density and low cell voltage) that can only be reached if their core materials, e.g. the membrane and the electrodes/electrocatalysts, are optimized. This contribution will particularly focus on the properties electrocatalysts must exhibit to be used in EHCs: they shall promote(very) fast hydrogen oxidation reaction(HOR) in presence of impurities, which implies that they are(very) tolerant to poisons as well. This consists of a prerequisite for the operation of the anode of an EHC used for the purification-compression of hydrogen, and the materials developed for poison-tolerance in the vast literature on low-temperature fuel cells, may not always satisfy these two criteria, as this contribution will review.
基金The authors thank the Auvergne Rhone-Alpes region for the funding of the PhD thesis of Marine TregaroPart of the work has been performed within the framework of the Centre of Excellence of Multifunctional Architectured Materials“CEMAM”no.ANR-10-LABX-44-01Both MR and MT make their PhD in the frame of the Eco-Sesa project,funded by IDEX Universite Grenoble Alpes.
文摘It is undisputed that hydrogen will play a great role in our future energetic mix, because it enables the storage of renewable electricity(power-to-H2) and the reversible conversion into electricity in fuel cell, not to speak of its wide use in the(petro)chemical industry. Whereas in these applications, pure hydrogen is required, today’s hydrogen production is still largely based on fossil fuels and can therefore not be considered pure. Therefore, purification of hydrogen is mandatory, at a large scale. In addition, hydrogen being the lightest gas, its volumetric energy content is well-below its competing fuels, unless it is compressed at high pressures(typically 70 MPa), making compression unavoidable as well. This contribution will detail the means available today for both purification and for compression of hydrogen. It will show that among the available technologies, the electrochemical hydrogen compressor(EHC), which also enables hydrogen purification, has numerous advantages compared to the classical technologies currently used at the industrial scale. EHC has their thermodynamic and operational advantages, but also their ease of use. However, the deployment of EHCs will be viable only if they reach sufficient performances, which implies some specifications that their base materials should stick to. The present contribution will detail these specifications.
基金financial support from the National Natural Science Foundation of China(Grant No.U1760206)the National Key R&D Program of China(Grant No.2017YFE0107900)+1 种基金the 111 Project 2.0 of China(Grant No.BP0719037)the financial support provided by the ESA-MAP MICAST project contract 14347/01/NL/SH.
文摘A volume averaged columnar solidification model,which couples the flow,temperature and solute concentration fields,is applied to simulate experimental continuous casting cases with and without vertical electromagnetic stirring(V-EMS).The calculated distribution of magnetic induction intensity and final macrosegregation maps are consistent with the experimental results.Calculation results reveal that the V-EMS promotes longitudinal melt flow,accelerates heat dissipation and solidification and finally reduces the central segregation of carbon.However,when V-EMS is applied,the solute distribution becomes asymmetric because the melt flow shows opposite directions between the near and far sides from stirrer.An obvious positive segregation band is observed at about 1/4 width of the billet near the stirrer in both calculated and experimental results.The position and degree of such positive segregation could be affected by installation height of stirrer,as demonstrated by additional simulation cases.
文摘Niamey, the capital of Niger, has experienced continuous demographic growth (+4%), accompanied by rapid urban expansion that is insufficiently controlled. This growth, combined with the effects of climate change as well as a drastic change in land use (urbanization of cultivated fields, deforestation of plateaus and erosion of slopes) disrupts the water cycle, thus leading to the superposition of three types of floods: 1) rain floods (monsoon period);2) river floods (Niger river);and 3) flooding caused by rising water table. In several neighbourhoods, the water table is now out in a sustainable manner and degrades already fragile sanitary conditions. This study aims to clarify the functioning of aquifers in the city of Niamey due to the combination of geological, geophysical and hydrogeological data. Hydrogeological investigations make it possible to identify, in areas flooded by the water table, a shallow aquifer with low capacitance (effective porosity of a few %) and low permeability (2 × 10<sup>-6</sup> to 1 × 10<sup>-4</sup> m/s), overlying at a level shallow clay (~10 m) and lying on the Precambrian base (schists, granites). This configuration limits flows and has led to the appearance of permanent pools created by the water table in the valley thalweg in and around the city. Thus, in Niamey, an increase of up to twenty to forty meters was observed between 1961 and 2021 with seasonal piezometric fluctuations of a pluri-metric order following the rainy season. Beyond the health impacts, this trajectory negatively impacts land and locally causes degradation or displacement of traffic axes. Containing the level of the water table appears to be essential in the long term for sustainable sanitation in the city of Niamey.
基金FAPEMIG (PPM X 45-16)CNPqpartially funded by CNPq 308035/2013-5
文摘Projections of climate change are essential to guide sustainable development plans in the tropical Andean countries such as Peru. This study assessed the projections of precipitation and potential evaporation, rain erosive potential, and precipitation concentration in the Mantaro River Basin, in the Peruvian Andes, which is important for agriculture and energy production in Peru. We assumed the Intergovernmental Panel on Climate Change (IPCC) AIB greenhouse gas emission scenario and simulated the global climate change by the HadCM3 global climate model. Due to the steepness of the mountain slopes and the narrowness of the river valley, this study uses the downscaling of the global model simulations by the regional Eta model down to 2o-km resolution. The downscaling projections show decrease in the monthly precipitation with respect to the baseline period, especially during the rainy season, between February and April, until the end of the 21st century. Meanwhile, a progressive increase in the monthly evaporation from the baseline period is projected. The Modified Fournier Index (MFI) shows a statistically significant downward trend in the Mantaro River Basin, whieh suggests a possible reduction in the rain erosive potential. The Precipitation Concentration Index (PCI) shows a statistically significant increasing trend, which indicates increasingly more irregular temporal distribution of precipitation towards the end of the century. The results of this study allow us to conclude that there should be a gradual increase in water deficit and precipitation concentration. Both changes can be negative for agriculture, power generation, and water supply in the Mantaro River Basin in Peru.
文摘The present study focuses on the impacts of extreme drought and flooding situations in Amazonia, using level/discharge data from some rivers in the Amazon region as indicators of impacts. The last 10 years have featured various “once in a century” droughts and floods in the Amazon basin, which have affected human and natural systems in the region. We assess a history of such hazards based on river data, and discuss some of the observed impacts in terms of vulnerability of human and natural systems, as well as some of adaptation strategies implemented by regional and local governments to cope with them. A critical perspective of mitigation of drought and flood policies in Amazonia suggests that they have been mostly ineffective in reducing vulnerability for the majority of the population, constituting, perhaps, examples of maladaptation via the undermining of resilience.
基金Item Sponsored by the French Agency for Environment and Energy (ADEME) as Part of the ISOPEM Project and labelled by TENERRDIS (Rhone-Alpes Energy Cluster)
文摘This paper proposes an estimate of the stirring intensity needed to maintain an efficient segregation of impurities towards the liquid when crystallizing semiconductors such as silicon,with rapid solidification rates(several cm/h).The method,valid far from stagnation points or detachments,is based on the properties of turbulent boundary layers,with a normal velocity of the liquid towards the solid/liquid interface due to solidification,that has the same effect as boundary layer suction in aeronautics.The transition between the diffusive regime(no segregation),and the convective regime(efficient segregation)occurs if the friction at the wall is greater than a threshold depending on the solidification rate.A chart is given to estimate the convecto-diffusive parameter from the ratio between stirring and solidification velocity,and the Reynolds number.
文摘A deep understanding of the physical processes coming along with the current interruption in high voltage circuit breakers is essential for the optimization of today’s switching technologies.Therefore a switching arc in a model circuit breaker is studied by means of computational fluid dynamics(CFD)simulations and optical emission spectroscopy(OES)in this contribution.Experimental investigations are performed in carbon dioxide(CO2)at absolute filling pressures of 0.1 and 0.5 MPa.CFD simulations are carried out based on a model of the arcing zone including a consistent treatment of the radiation transport and the wall ablation.Carbon ion line radiation is analysed in the experiment using an optical path in the heating channel between the electrodes inside the nozzle system.The pressure value in the arc is estimated based on the line width-intensity dependence.Obtained values correspond to the measured pressure outside the arc.For the temperature profiles,a good agreement within the accuracy of the approaches is observed between the CFD simulations and the results of OES.
文摘The introduction of tacrolimus in clinical practice has improved patient survival after organ transplant.However,despite the long use of tacrolimus in clinical practice,the best way to use this agent is still a matter of intense debate.The start of the genomic era has generated new research areas,such as pharmacogenetics,which studies the variability of drug response in relation to the genetic factors involved in the processes responsible for the pharmacokinetics and/or the action mechanism of a drug in the body.This variability seems to be correlated with the presence of genetic polymorphisms.Genotyping is an attractive option especially for the initiation of the dosing of tacrolimus;also,unlike phenotypic tests,the genotype is a stable characteristic that needs to be determined only once for any given gene.However,prospective clinical studies must show that genotype determination before transplantation allows for better use of a given drug and improves the safety and clinical efficacy of that medication.At present,research has been able to reliably show that the CYP3A5 genotype,but not the CYP3A4 or ABCB1 ones,can modify the pharmacokinetics of tacrolimus.However,it has not been possible to incontrovertibly show that the corresponding changes in the pharmacokinetic profile are linked with different patient outcomes regarding tacrolimus efficacy and toxicity.For these reasons,pharmacogenetics and individualized medicine remain a fascinating area for further study and may ultimately become the face of future medical practice and drug dosing.
基金Project(2009AA033501)supported by the National Hi-tech Research and Development Program of ChinaProject(2006BAE04B01-2)supported by the National Key Technology Research&Development Program of ChinaProject(06SR07104)supported by theInternational Cooperation Fund of Shanghai Science and Technology Committee,Shanghai/Rhone-Alpes Science and Technology
文摘The solution-treated Mg-4Y-4Sm-0.5Zr alloy was extruded at temperatures from 325℃ to 500℃.Dynamic recrystallization(DRX) completely occurs when the alloy is extruded at 350℃and above.The grains of the extruded alloy are obviously refined by the occurrence of DRX.The average grain size of the extruded alloy increases with increasing the extrusion temperature,leading to a slight decrease of the ultimate tensile strength(UTS) and the yield strength(YS) .On the contrary,the UTS and YS of the extruded and aged alloy increase with increasing the extrusion temperature.Values of UTS of 400 MPa,YS larger than 300 MPa and elongation(EL) of 7%are achieved after extrusion at 400℃ and ageing at 200℃ for 16 h.Both grain refinement and precipitation are efficient strengthening mechanisms for the Mg-4Y-4Sm-0.5Zr alloy.