In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m...In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.展开更多
In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies of strongly magnetized objects. We will focus on the physics and astrophysics of strongly magnetize...In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies of strongly magnetized objects. We will focus on the physics and astrophysics of strongly magnetized objects, namely magnetars, accreting X-ray pulsars, and rotation powered pulsars. We also discuss the science potential of eXTP for QED studies. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.展开更多
Combining observations of multi-messengers help in boosting the sensitivity of astrophysical source searches,and probe various aspects of the source physics.In this chapter we discuss how LHAASO observations of very h...Combining observations of multi-messengers help in boosting the sensitivity of astrophysical source searches,and probe various aspects of the source physics.In this chapter we discuss how LHAASO observations of very high energy(VHE)gamma rays in combination with telescopes for the other messengers can help in solving the origins of VHE neutrinos and galactic and extragalactic cosmic rays.展开更多
In order to reveal the nature of dark matter,it is crucial to detect its non-gravitational interactions with the standard model particles.The traditional dark matter searches focused on the so-called weakly interactin...In order to reveal the nature of dark matter,it is crucial to detect its non-gravitational interactions with the standard model particles.The traditional dark matter searches focused on the so-called weakly interacting massive particles.However,this paradigm is strongly constrained by the null results of current experiments with high precision.Therefore there is a renewed interest of searches for heavy dark matter particles above TeV scale.The Large High Altitude Air Shower Observatory(LHAASO)with large effective area and strong background rejection power is very suitable to investigate the gamma-ray signals induced by dark matter annihilation or decay above TeV scale.In this document,we review the theoretical motivations and background of heavy dark matter.We review the prospects of searching for the gamma-ray signals resulted from dark matter in the dwarf spheroidal satellites and Galactic halo for LHAASO,and present the projected sensitivities.We also review the prospects of searching for the axion-like particles,which are a kind of well motivated light pseudo-scalars,through the LHAASO measurement of the very high energy gamma-ray spectra of astrophysical sources.展开更多
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)support by ASI, under the dedicated eXTP agreements and agreement ASI-INAF (Grant No. 2017-14-H.O.)+3 种基金by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft- und Raumfahrt, the German Aerospce Center (DLR)support of Science Centre (Grant No. 2013/10/M/ST9/00729)support from MINECO (Grant No. ESP2017-82674-R) and FEDER funds
文摘In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)supported by the Bundesministerium fuer Wirtschaft und Technologie through the Deutsches Zentrum fuer Luft-und Raumfahrte.V.(DLR)(Grant No.FKZ 50 OO 1701)Financial contribution from the agreement between the Italian Space Agency and the Istituto Nazionale di Astrofisica ASI-INAF n.2017-14H.O
文摘In this paper we present the science potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies of strongly magnetized objects. We will focus on the physics and astrophysics of strongly magnetized objects, namely magnetars, accreting X-ray pulsars, and rotation powered pulsars. We also discuss the science potential of eXTP for QED studies. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020s.
基金Supported by the Natural Science Foundation of China(11773003,11875264,12003007,12173091,U1931201,U2031105)the Fundamental Research Funds for the Central Universities(2020kfyXJJS039)。
文摘Combining observations of multi-messengers help in boosting the sensitivity of astrophysical source searches,and probe various aspects of the source physics.In this chapter we discuss how LHAASO observations of very high energy(VHE)gamma rays in combination with telescopes for the other messengers can help in solving the origins of VHE neutrinos and galactic and extragalactic cosmic rays.
文摘In order to reveal the nature of dark matter,it is crucial to detect its non-gravitational interactions with the standard model particles.The traditional dark matter searches focused on the so-called weakly interacting massive particles.However,this paradigm is strongly constrained by the null results of current experiments with high precision.Therefore there is a renewed interest of searches for heavy dark matter particles above TeV scale.The Large High Altitude Air Shower Observatory(LHAASO)with large effective area and strong background rejection power is very suitable to investigate the gamma-ray signals induced by dark matter annihilation or decay above TeV scale.In this document,we review the theoretical motivations and background of heavy dark matter.We review the prospects of searching for the gamma-ray signals resulted from dark matter in the dwarf spheroidal satellites and Galactic halo for LHAASO,and present the projected sensitivities.We also review the prospects of searching for the axion-like particles,which are a kind of well motivated light pseudo-scalars,through the LHAASO measurement of the very high energy gamma-ray spectra of astrophysical sources.