Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transf...Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.展开更多
The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance...The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance of lithium batteries.Despite considerable advances in simulating the bulk phase properties of battery materials,the understanding of interfaces,including crystalline interfaces that represent the simplest case,remains limited.This is primarily due to challenges in performing ground-state searches for interface microstructures and the high computational costs associated with first-principles methods.Herein,we introduce InterOptimus,an automated workflow designed to efficiently search for ground-state heterogeneous interfaces.InterOptimus incorporates a rigorous,symmetry-aware equivalence analysis for lattice matching and termination scanning.Additionally,it introduces stereographic projection as an intuitive and comprehensive framework for visualizing and classifying interface structures.By integrating universal machine learning interatomic potentials(MLIPs),InterOptimus enables rapid predictions of interface energy and stability,significantly reducing the necessary computational cost in density functional theory(DFT)by over 90%.We benchmarked several MLIPs at three critical lithium battery interfaces,Li_(2)S|Ni_(3)S_(2),LiF|NCM,and Li_(3)PS_(4)|Li,and demonstrated that the MLIPs achieve accuracy comparable to DFT in modeling potential energy surfaces and ranking interface stabilities.Thus,InterOptimus facilitates the efficient determination of ground-state heterogeneous interface structures and subsequent studies of structure-property relationships,accelerating the interface engineering of novel battery materials.展开更多
Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions...Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).展开更多
Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers f...Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.展开更多
The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic framework...The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.展开更多
High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high...High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.展开更多
The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar(SHPB)impact,and the microstructure evolution and crack form...The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar(SHPB)impact,and the microstructure evolution and crack formation mechanism were revealed.The yield strength and work hardening rate increase significantly with increasing impact strain rate.Deformation twinning and non-basal dislocation slip are the primary deformation mechanisms during testing.Contrary to crack initiation mechanism facilitated by adiabatic shear bands,we find that high-density co-axial nanocrystalline grains form near cracks,which leads to local softening and promotes crack initiation and rapid propagation.Most grains have similar<1^(-)21^(-)0>orientations,with unique misorientation of 24°,32°,62°,78°and 90°between adjacent grains,suggesting that these grains are primarily formed by interface transformation,which exhibits distinct differences from recrystallized grains.Our results shed light upon the dynamic mechanical response and crack formation mechanism in magnesium alloys under impact deformation.展开更多
Carbon nanotubes are uniquely featured by the nanoscale tubular structure with a highly-curved surface and defined chirality.The diameter and chirality fundamentally determine their stability and electrical and therma...Carbon nanotubes are uniquely featured by the nanoscale tubular structure with a highly-curved surface and defined chirality.The diameter and chirality fundamentally determine their stability and electrical and thermal properties.Up to now,the relationship between the intrinsic thermal conductivity and the atomic features of CNTs has not been established,due to the challenges in precise measurements and characterizations.In this work,we develop a micro electro-thermal device enabling simultaneous thermal measurements by Raman spectroscopy and atomic structural characterization by transmission electron microscopy for individual CNTs.The influence of diameter and chirality is systematically investigated.In addition,the temperature dependence of the thermal conductivity was extracted from parameter optimization of finite-element modeling.It is found that the thermal transport of CNTs depends mainly on the diameter,while the chiral angle has no significant influence.Along with increasing diameter,the room temperature thermal conductivity increases and eventually approaches the limit of flat graphene.展开更多
CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemic...CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemical short-range order(CSRO)widely exists in high/medium entropy alloys,its formation in the LPBF-built samples still lacks enough understanding.In this study,we verified its existence by fine transmission electron microscopy characterizations and utilized hybrid Monte Carlo/molecular dynamics simulations to investigate the features and effects of CSRO in LPBF-built CrCoNi MEA(AM model).Results showed that the CSRO fraction and the stacking fault energy of the AM model lie between those of the well-annealed and random solid solution counterparts.Among these models,the AM model exhibited the best strain hardening ability due to its highest capability to generate and store sessile dislocations.The results agreed well with existing data and provide guidance to the future development of LPBF-built CrCoNi MEA.展开更多
High-strength steel with excellent ductility is pivotal for the formability and safety of critical structural components.Here,a heterogeneous metastable lamellar steel,composed of alternating lamellar ferrite and aust...High-strength steel with excellent ductility is pivotal for the formability and safety of critical structural components.Here,a heterogeneous metastable lamellar steel,composed of alternating lamellar ferrite and austenite aligned with the rolling direction,was developed through an innovative combination of warm rolling and immediate annealing processes.This novel design overcomes the strength-ductility trade-off,achieving high ultimate tensile strength(∼1.2 GPa)and excellent uniform elongation(∼78%),pushing the product of ultimate tensile strength and uniform elongation to an ultra-high level(>90 GPa%).The high tensile strength is attributed to ultrafine lamellar grains and significant work hardening induced by the hetero-deformation and transformation-induced plasticity(TRIP)effect.The exceptional ductility is a result of the synergy of multiple plasticity mechanisms,including(i)the inherent plastic deformation ability of lamellar microstructure and the hetero-deformation-induced hardening in the early deformation period,(ii)the persistent TRIP effect induced by the lamellar austenite with high mechanical stability and the elimination of strain localization caused by prolonged strain hardening due to the coordinated deformation of lamellar austenite and ferrite in the middle deformation period,and(iii)delamination cracking in the late deformation period.This approach adopted in current work offers a straightforward and economically feasible pathway for fabricating advanced high-strength steel with superior performance.展开更多
基金supported by National Science Fund for Distinguished Young Scholars(Grant No.52325206)National Key Research and Development Program of China(Grant No.2021YFF0500600)+3 种基金National Natural Science Foundation of China(Grant Nos.U2001220 and 52203298)Shenzhen Technical Plan Project(Grant Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008,and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(Grant No.SZPR2023006)Shenzhen Science and Technology Program(Grant No.WDZC20231126160733001).
文摘Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.
基金supported by the National Natural Science Foundation of China(92470110)the Special Funds for the Development of Strategic Emerging Industries in Shenzhen(XMHT20240108008)the Shenzhen Stable Support Program for Higher Education Institutions(WDZC20231126215806001)。
文摘The formation of interphase layers,including the cathode-electrolyte interphase(CEI)and solidelectrolyte interphase(SEI),exhibits significant chemical complexity and plays a pivotal role in determining the performance of lithium batteries.Despite considerable advances in simulating the bulk phase properties of battery materials,the understanding of interfaces,including crystalline interfaces that represent the simplest case,remains limited.This is primarily due to challenges in performing ground-state searches for interface microstructures and the high computational costs associated with first-principles methods.Herein,we introduce InterOptimus,an automated workflow designed to efficiently search for ground-state heterogeneous interfaces.InterOptimus incorporates a rigorous,symmetry-aware equivalence analysis for lattice matching and termination scanning.Additionally,it introduces stereographic projection as an intuitive and comprehensive framework for visualizing and classifying interface structures.By integrating universal machine learning interatomic potentials(MLIPs),InterOptimus enables rapid predictions of interface energy and stability,significantly reducing the necessary computational cost in density functional theory(DFT)by over 90%.We benchmarked several MLIPs at three critical lithium battery interfaces,Li_(2)S|Ni_(3)S_(2),LiF|NCM,and Li_(3)PS_(4)|Li,and demonstrated that the MLIPs achieve accuracy comparable to DFT in modeling potential energy surfaces and ranking interface stabilities.Thus,InterOptimus facilitates the efficient determination of ground-state heterogeneous interface structures and subsequent studies of structure-property relationships,accelerating the interface engineering of novel battery materials.
基金National Research Foundation (NRF Investigatorship NRF-NRFI09-0002)Agency for Science,Technology and Research (MTC Programmatic Fund M23L9b0052)。
文摘Rechargeable zinc-air batteries(ZABs) have recently drawn great attention in energy research due to their high theoretical capacity,low costs, and inherently safe nature [1–3]. However, the sluggish cathode reactions necessitate the development of bifunctional oxygen electrocatalysts with lower ΔE indicator values. The ΔE indicator is commonly employed to quantitatively evaluate the electrocatalytic activity of a bifunctional oxygen electrocatalyst,representing the overall overpotential from oxygen reduction reaction(ORR) to oxygen evolution reaction(OER).
基金supported by the National Key Research and Development Program of China(2021YFF0500600)National Natural Science Foundation of China(Nos.U2001220,52203298 and 523B2022)+2 种基金National Science Fund for Distinguished Young Scholars(No.52325206)Shenzhen Technical Plan Project(Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008 and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(No.SZPR2023006).
文摘Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.
基金supported by the National Natural Science Foundation of China(Nos.52374302 and 51874099)the Natural Science Foundation of Fujian Province’s Key Project(No.2021J02031)+1 种基金support from the open fund from Academy of Carbon Neutrality of Fujian Normal University(No.TZH_(2)022-06)We also thank the Undergraduate Training Programs for Innovation and Entrepreneurship(No.cxx1-2024363)。
文摘The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.
基金supported by the A*STAR MTC Programmatic Project(No.M23L9b0052)the Indonesia-NTU Singapore Institute of Research for Sustainability and Innovation(INSPIRASI)(No.6635/E3/KL.02.02/2023)+2 种基金the Singapore NRF Singapore-China Flagship Program(No.023740-00001)the National Natural Science Foundation of China(Nos.11975043 and 11475300)the China Scholarship Council(No.202306460087)。
文摘High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.
基金support from the National Natural Science Foundation of China(Grant Nos.52301137,51974097,52364050)the Natural Science Special Foundation of Guizhou University(No.(2023)20)+1 种基金Guizhou Province Science and Technology Project(Grant Nos.[2023]001,[2019]2163)Guiyang city Science and Technology Project(Grant No.[2023]48-16).
文摘The dynamic mechanical response and deformation mechanism of magnesium-yttrium alloy at high strain rate were investigated using split-Hopkinson pressure bar(SHPB)impact,and the microstructure evolution and crack formation mechanism were revealed.The yield strength and work hardening rate increase significantly with increasing impact strain rate.Deformation twinning and non-basal dislocation slip are the primary deformation mechanisms during testing.Contrary to crack initiation mechanism facilitated by adiabatic shear bands,we find that high-density co-axial nanocrystalline grains form near cracks,which leads to local softening and promotes crack initiation and rapid propagation.Most grains have similar<1^(-)21^(-)0>orientations,with unique misorientation of 24°,32°,62°,78°and 90°between adjacent grains,suggesting that these grains are primarily formed by interface transformation,which exhibits distinct differences from recrystallized grains.Our results shed light upon the dynamic mechanical response and crack formation mechanism in magnesium alloys under impact deformation.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFA1203302)the National Natural Science Foundation of China(Grant Nos.52130209,52188101)+4 种基金the JSPS Kakenhi(Grant Nos.JP25820336,JP20K05281,and JP23H01796)the JST-FOREST Program(Grant No.JPMJFR223T)the WPI-MANA“Challenging Research Program(CRP)”the National Institute for Materials Science(NIMS)“Support system for curiosity-driven research”the“Advanced Research Infrastructure for Materials and Nanotechnology in Japan(ARIM)”of the Ministry of Education,Culture,Sports,Science and Technology(MEXT)(Grant No.JPMXP1223NM5306).
文摘Carbon nanotubes are uniquely featured by the nanoscale tubular structure with a highly-curved surface and defined chirality.The diameter and chirality fundamentally determine their stability and electrical and thermal properties.Up to now,the relationship between the intrinsic thermal conductivity and the atomic features of CNTs has not been established,due to the challenges in precise measurements and characterizations.In this work,we develop a micro electro-thermal device enabling simultaneous thermal measurements by Raman spectroscopy and atomic structural characterization by transmission electron microscopy for individual CNTs.The influence of diameter and chirality is systematically investigated.In addition,the temperature dependence of the thermal conductivity was extracted from parameter optimization of finite-element modeling.It is found that the thermal transport of CNTs depends mainly on the diameter,while the chiral angle has no significant influence.Along with increasing diameter,the room temperature thermal conductivity increases and eventually approaches the limit of flat graphene.
基金financially supported by the National Key R&D Program of China(No.2022YFB4602102)the National Natural Science Foundation of China(Grant No.51971144)the Natural Science Foundation of Shanghai(Grant No.19ZR1425200)。
文摘CrCoNi medium entropy alloy(MEA)fabricated by laser powder bed fusion(LPBF)benefits from its distinctive hierarchical microstructure and has great potential as a structural material.However,while the intriguing chemical short-range order(CSRO)widely exists in high/medium entropy alloys,its formation in the LPBF-built samples still lacks enough understanding.In this study,we verified its existence by fine transmission electron microscopy characterizations and utilized hybrid Monte Carlo/molecular dynamics simulations to investigate the features and effects of CSRO in LPBF-built CrCoNi MEA(AM model).Results showed that the CSRO fraction and the stacking fault energy of the AM model lie between those of the well-annealed and random solid solution counterparts.Among these models,the AM model exhibited the best strain hardening ability due to its highest capability to generate and store sessile dislocations.The results agreed well with existing data and provide guidance to the future development of LPBF-built CrCoNi MEA.
基金support from the National Natural Science Foundation of China(Grant No.52304389)the China Postdoctoral Science Foundation(No.2022M720402)+2 种基金Huibin Wu and Gang Niu appreciate the support from the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01)Na Gong appreciates the support from the Structural Metal Alloy Program(SMAP,No.A18B1b0061)Gang Niu is grateful to Hatem S.Zurob for his insightful recommendation and expressive discussion.
文摘High-strength steel with excellent ductility is pivotal for the formability and safety of critical structural components.Here,a heterogeneous metastable lamellar steel,composed of alternating lamellar ferrite and austenite aligned with the rolling direction,was developed through an innovative combination of warm rolling and immediate annealing processes.This novel design overcomes the strength-ductility trade-off,achieving high ultimate tensile strength(∼1.2 GPa)and excellent uniform elongation(∼78%),pushing the product of ultimate tensile strength and uniform elongation to an ultra-high level(>90 GPa%).The high tensile strength is attributed to ultrafine lamellar grains and significant work hardening induced by the hetero-deformation and transformation-induced plasticity(TRIP)effect.The exceptional ductility is a result of the synergy of multiple plasticity mechanisms,including(i)the inherent plastic deformation ability of lamellar microstructure and the hetero-deformation-induced hardening in the early deformation period,(ii)the persistent TRIP effect induced by the lamellar austenite with high mechanical stability and the elimination of strain localization caused by prolonged strain hardening due to the coordinated deformation of lamellar austenite and ferrite in the middle deformation period,and(iii)delamination cracking in the late deformation period.This approach adopted in current work offers a straightforward and economically feasible pathway for fabricating advanced high-strength steel with superior performance.
基金supported by the National Natural Science Foundation of China (51802316, 51927803, 52188101 and 52130209)the JSPS KAKENHI (JP20K05281 and JP25820336)+2 种基金Natural Science Foundation of Liaoning Province (2020-MS009)Liaoning Revitalization Talents Program (XLYC2002037)Basic Research Project of Natural Science Foundation of Shandong Province, China (ZR2019ZD49)