Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
BACKGROUND Colorectal cancer is a malignancy with a high risk of lymph node metastasis and poor prognosis,and thus requires an accurate diagnosis.AIM To assess the diagnostic value of combined magnetic resonance T2-we...BACKGROUND Colorectal cancer is a malignancy with a high risk of lymph node metastasis and poor prognosis,and thus requires an accurate diagnosis.AIM To assess the diagnostic value of combined magnetic resonance T2-weighted imaging(T2WI)and diffusion-weighted imaging(DWI)in colorectal cancer.METHODS We included 120 patients with suspected colorectal cancer who underwent magnetic resonance imaging.Surgical pathology was used as the gold standard for comparison.Combined T2WI and DWI showed higher diagnostic efficacy than either of the two methods used individually.RESULTS The combined method achieved 94.74%sensitivity,95.45%specificity,95.00%accuracy,94.74%positive predictive value,and 95.45%negative predictive value in qualitative diagnosis.It showed 94.44%sensitivity,95.00%specificity,94.74%accuracy,94.44%positive predictive value,and 95.00%negative predictive value in clinical staging.Finally,it showed 94.74%sensitivity,94.59%specificity,94.74%accuracy,94.74%positive predictive value,and 94.59%negative predictive value in diagnosing lymph node metastasis.These results were highly consistent with that of the gold standard.CONCLUSION This study combined T2WI and DWI for accurate diagnosis of colorectal cancer,aiding clinical staging and lymph node metastasis assessment.This approach is promising for clinical application.展开更多
Glioblastoma multiforme(GBM)are the most aggressive and common tumors in the central nervous system.GBM are classified as grade IV according to the World Health Organization.The incidence of GBM slightly differs among...Glioblastoma multiforme(GBM)are the most aggressive and common tumors in the central nervous system.GBM are classified as grade IV according to the World Health Organization.The incidence of GBM slightly differs among countries.The etiology of GBM has not been entirely clarified.No risk factors such as smoking,chemicals or dietary can be identified for GBM.Only the exposure to high radiation dose such as radiotherapy of head and neck cancers have been reported to increase the risk of glioma tumors.In this review,the authors attempted to cover several aspects of GBM.This review was based on a collection of recent publications from different research fields but all related to GBM in order to shed the light on this disease.We highlighted the current insights of GBM in the aspects of epidemiology,pathogenesis,etiology,molecular genetics,imaging technologies,artificial intelligence and treatment.A literature review was conducted for GBM with relevant keywords.Although GBM was known since several decades,its causes are still confounding,and its early detection is often unpredictable.Since the hereditary aspect of GBM is very low,there remains as the common symptoms the interference with normal brain function,memory loss,unusual behavior,headaches and seizures.The progress in GBM treatment is not satisfactory even with the deployment of huge efforts and financial costs in many domains like gene therapy,surgery and chemoradiotherapy.Despite the rapid developments of the standard treatment for GBM,the trend of survival rate did not change among years.展开更多
Although aggregation-induced emission(AIE) units enabled fluorophores as rotor-based probes for advancing biomedical imaging,the quantum-mechanism through which AIEgens enhanced fluorescence via aggregation or rotor e...Although aggregation-induced emission(AIE) units enabled fluorophores as rotor-based probes for advancing biomedical imaging,the quantum-mechanism through which AIEgens enhanced fluorescence via aggregation or rotor effects remains poorly understood.Herein,we elucidate the mechanisms governing the tetraphenylethene(TPE)'s function(rotor-effect or aggregation-effect) in cyanine systems by tuning the methine-chain length from Cy3 to Cy5 to Cy7.Our study shows that modulating the frontier orbital energy difference(ΔE(DA)) between the cyanine and TPE allows TPE to display AIE property in Cy3,act as a rotor in Cy5 uniquely devoid of aggregation activation,or neither in Cy7.In vitro and in vivo results further demonstrate that rotor-specific TPE-Cy5 can serve as a sensitive probe for imaging tumor rigidity.We anticipate that continued advancements in TPE rotor visualization will open new avenues for understanding the biophysical behaviors of tumors.展开更多
Perianal fistulising Crohn’s disease is a challenging complication that can affect up to 20%of patients with Crohn’s disease and is associated with significant morbidity.Despite advances in medical therapies,particu...Perianal fistulising Crohn’s disease is a challenging complication that can affect up to 20%of patients with Crohn’s disease and is associated with significant morbidity.Despite advances in medical therapies,particularly anti-tumor necrosis factor agents,the majority of patients still require surgical intervention.Accurate diagnosis and monitoring are essential to optimise outcomes and guide multidisciplinary management.Although clinical scoring systems such as the perianal disease activity index are widely used,their subjective application limits their reproducibility and reliability,underscoring the need for more objective methods of evaluating perianal fistulising Crohn’s disease activity.Imaging has thus become central to the objective assessment of perianal fistulising Crohn’s disease,with magnetic resonance imaging(MRI)recognised as the gold standard in view of its ability to provide clear,detailed images of the perianal region in a radiation-free manner.Guidelines also endorse the use of imaging modalities such as endoanal ultrasound and transperineal ultrasound as viable alternatives to MRI for the assessment of perianal fistulising Crohn’s disease in centres with appropriate expertise.This article aims to evaluate and compare the diagnostic accuracy and clinical utility of MRI,endoanal ultrasound,and transperineal ultrasound in the assessment of perianal fistulising Crohn’s disease,highlighting their respective strengths,limitations,and roles in clinical practice.展开更多
Automated prostate cancer detection in magnetic resonance imaging(MRI)scans is of significant importance for cancer patient management.Most existing computer-aided diagnosis systems adopt segmentation methods while ob...Automated prostate cancer detection in magnetic resonance imaging(MRI)scans is of significant importance for cancer patient management.Most existing computer-aided diagnosis systems adopt segmentation methods while object detection approaches recently show promising results.The authors have(1)carefully compared performances of most-developed segmentation and object detection methods in localising prostate imaging reporting and data system(PIRADS)-labelled prostate lesions on MRI scans;(2)proposed an additional customised set of lesion-level localisation sensitivity and precision;(3)proposed efficient ways to ensemble the segmentation and object detection methods for improved performances.The ground-truth(GT)perspective lesion-level sensitivity and prediction-perspective lesion-level precision are reported,to quantify the ratios of true positive voxels being detected by algorithms over the number of voxels in the GT labelled regions and predicted regions.The two networks are trained independently on 549 clinical patients data with PIRADS-V2 as GT labels,and tested on 161 internal and 100 external MRI scans.At the lesion level,nnDetection outperforms nnUNet for detecting both PIRADS≥3 and PIRADS≥4 lesions in majority cases.For example,at the average false positive prediction per patient being 3,nnDetection achieves a greater Intersection-of-Union(IoU)-based sensitivity than nnUNet for detecting PIRADS≥3 lesions,being 80.78%�1.50%versus 60.40%�1.64%(p<0.01).At the voxel level,nnUnet is in general superior or comparable to nnDetection.The proposed ensemble methods achieve improved or comparable lesion-level accuracy,in all tested clinical scenarios.For example,at 3 false positives,the lesion-wise ensemble method achieves 82.24%�1.43%sensitivity versus 80.78%�1.50%(nnDetection)and 60.40%�1.64%(nnUNet)for detecting PIRADS≥3 lesions.Consistent conclusions are also drawn from results on the external data set.展开更多
Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnosti...Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.展开更多
The rapid development of super-resolution microscopy has made it possible to observe subcellular structures and dynamic behaviors in living cells with nanoscale spatial resolution, greatly advancing progress in life s...The rapid development of super-resolution microscopy has made it possible to observe subcellular structures and dynamic behaviors in living cells with nanoscale spatial resolution, greatly advancing progress in life sciences. As hardware technology continues to evolve, the availability of new fluorescent probes with superior performance is becoming increasingly important. In recent years, fluorescent nanoprobes (FNPs) have emerged as highly promising fluorescent probes for bioimaging due to their high brightness and excellent photostability. This paper focuses on the development and applications of FNPs as probes for live-cell super-resolution imaging. It provides an overview of different super-resolution methods, discusses the performance requirements for FNPs in these methods, and reviews the latest applications of FNPs in the super-resolution imaging of living cells. Finally, it addresses the challenges and future outlook in this field.展开更多
BACKGROUND The differential diagnosis between hepatocellular carcinoma(HCC)and intrahepatic cholangiocarcinoma(ICC)is crucial.The individual differences of patients increase the complexity of diagnosis.Currently,imagi...BACKGROUND The differential diagnosis between hepatocellular carcinoma(HCC)and intrahepatic cholangiocarcinoma(ICC)is crucial.The individual differences of patients increase the complexity of diagnosis.Currently,imaging diagnosis mainly relies on conventional computed tomography and magnetic resonance imaging(MRI),but few studies have investigated MRI functional imaging.This study combined MRI functional imaging including intravoxel incoherent motion(IVIM)and diffusion kurtosis imaging(DKI),facilitating differential diagnosis.AIM To explore the differential diagnostic value of IVIM imaging and DKI in differentiating between HCC and ICC.METHODS A total of 58 patients who underwent multi-b-value diffusion weighted imaging(DWI)on a 3.0 T magnetic MRI scanner were enrolled in this study.Standard apparent diffusion coefficient(SADC),IVIM quantitative parameters,including pure diffusion coefficient(D),pseudo diffusion coefficient(Dstar),and perfusion fraction(f),as well as the DKI quantitative parameters mean diffusion coefficient(MD)and mean kurtosis coefficient(MK)were computed by multi-b DWI images.Theχ2 test was used for classified data,and a one-way analysis of variance was performed for counted data.P<0.05 indicated statistical significance.The diagnostic value of parameters in HCC and ICC was analyzed using the receiver operating characteristic(ROC)curve.RESULTS The SADC,D,and MD values were significantly lower in the HCC group compared to the ICC group,whereas MK was significantly higher in the HCC group than in the ICC group(P<0.05).No significant difference in Dstar and f was observed between the HCC group and the ICC group(P>0.05).The optimal cutoff levels of the total values of SADC,D,MK,MD and all associated parameters were 1.25×10^(-3)mm^(2)/second,1.32×10^(-3)mm^(2)/second,650.2×10^(-3)mm^(2)/second,1.41×10^(-3)mm^(2)/second and 0.46×10^(-3)mm^(2)/second,respectively.The sensitivity of diagnosis was 95%,80%,90%,100%,and 70%,respectively,the specificity of diagnosis was 67.39%,69.57%,67.39%,43.48%,and 93.48%,respectively,and the area under the ROC curve was 0.874,0.793,0.733,0.757,and 0.895,respectively.CONCLUSION SADC,D,MK,and MD could be used to distinguish HCC from ICC,with the diagnostic value reaching a maximum after establishing a joint model.展开更多
Visual assessment of tumor metastatic capacity is crucial for predicting hepatocellular carcinoma(HCC)prognosis and guiding clinical therapeutic approaches.In this study,we developed an enzyme-responsive probe based o...Visual assessment of tumor metastatic capacity is crucial for predicting hepatocellular carcinoma(HCC)prognosis and guiding clinical therapeutic approaches.In this study,we developed an enzyme-responsive probe based on the peptide GK10,which is selectively cleaved by matrix metalloproteinase-9(MMP-9),a critical marker for metastasis in HCC.The GK10 peptide was conjugated with near-infrared fiuorescent molecule IR783,fiuorescent quencher black hole quencher 3(BHQ3),and magnetic resonance(MR)contrast agent DOTA-Gd,forming the IR783-GK10-BHQ3-Gd probe.Upon MMP-9 cleavage of GK10,BHQ3 is released from the probe,thereby amplifying the previously quenched IR783 fiuorescence signal.In vitro experiments demonstrate the probe's impressive detection limit for MMP-9,as low as 1.84 ng/m L.Moreover,in vivo imaging results reveal that the probe can differentiate liver cancers with varying metastatic capacities.The fiuorescence and MR imaging signal intensity of high metastatic HCC are approximately1.2 times greater than that of low metastatic HCC.Thus,this engineered probe holds promise as a valuable tool for evaluating HCC metastatic capacity through fiuorescence-MR dual-mode imaging.展开更多
BACKGROUND Fistula-in-ano is an abnormal tunnel formation linking the anal canal with the perineum and perianal skin.Multiple imagining methods are available to evaluate it,among which magnetic resonance imaging(MRI)i...BACKGROUND Fistula-in-ano is an abnormal tunnel formation linking the anal canal with the perineum and perianal skin.Multiple imagining methods are available to evaluate it,among which magnetic resonance imaging(MRI)is the most advanced nonin-vasive preoperative method.However,it is limited in its visualization function.AIM To investigate the use of intraluminal MRI for perianal fistulas via a novel direct MRI fistulography method.METHODS We mixed 3%hydrogen peroxide(HP)with gadolinium for HPMRI fistulogra-phy,retrospectively analyzing 60 cases of complex/recurrent fistula-in-ano using physical examination,trans-perineal ultrasonography(TPUS),low-spatial-reso-lution MRI,and high-resolution direct HPMRI fistulography.We assessed detec-tion rates of fistula tracks,internal openings,their relationship with anal sphinc-ters,and perianal abscesses using statistical analyses,including interobserver agreement(Kappa statistic),and compared results with intraoperative findings.RESULTS Surgical confirmation in 60 cases showed that high-resolution direct HPMRI fis-tulography provided superior detection rates for internal openings(153)and fistula tracks(162)compared to physical exams,TPUS,and low-spatial-resolution MRI(Z>5.7,P<0.05).The effectiveness of physical examination and TPUS was also inferior to that of our method for detecting perianal abscesses(54)(Z=6.773,3.694,P<0.05),whereas that of low-spatial-resolution MRI was not significantly different(Z=1.851,P=0.06).High-resolution direct HPMRI fistulography also achieved the highest interobserver agreement(Kappa:0.89,0.85,and 0.80),while low-spatial-resolution MRI showed moderate agreement(Kappa:0.78,0.74,and 0.69).TPUS and physical examination had lower agreement(Kappa range:0.33-0.63).CONCLUSION High-resolution direct HPMRI fistulography enhances the visualization of recurrent and complex fistula-in-ano,including branched fistulas,allowing for precise planning and improved surgical outcomes.展开更多
BACKGROUND Colorectal cancer(CRC)is a malignant tumor with high morbidity and mortality rates worldwide.With the development of medical imaging technology,imaging features are playing an increasingly important role in...BACKGROUND Colorectal cancer(CRC)is a malignant tumor with high morbidity and mortality rates worldwide.With the development of medical imaging technology,imaging features are playing an increasingly important role in the prognostic evaluation of CRC.Laparoscopic radical resection is a common surgical approach for treating CRC.However,research on the link between preoperative imaging and short-term prognosis in this context is limited.We hypothesized that specific preope-rative imaging features can predict the short-term prognosis in patients under-going laparoscopic CRC resection.AIM To investigate the imaging features of CRC and analyze their correlation with the short-term prognosis of laparoscopic radical resection.METHODS This retrospective study conducted at the Affiliated Cancer Hospital of Shandong First Medical University included 122 patients diagnosed with CRC who under-went laparoscopic radical resection between January 2021 and February 2024.All patients underwent magnetic resonance imaging(MRI)and were diagnosed with CRC through pathological examination.MRI data and prognostic indicators were collected 30 days post-surgery.Logistic regression analysis identified imaging fea-tures linked to short-term prognosis,and a receiver operating characteristic(ROC)curve was used to evaluate the predictive value.RESULTS Among 122 patients,22 had irregular,low-intensity tumors with adjacent high signals.In 55,tumors were surrounded by alternating signals in the muscle layer.In 32,tumors extended through the muscular layer and blurred boundaries with perienteric adipose tissue.Tumor signals appeared in the adjacent tissues in 13 patients with blurred gaps.Logistic regression revealed differences in longitudinal tumor length,axial tumor length,volume transfer constant,plasma volume fraction,and apparent diffusion coefficient among patients with varying prognostic results.ROC analysis indicated that the areas under the curve for these parameters were 0.648,0.927,0.821,0.809,and 0.831,respectively.Sensitivity values were 0.643,0.893,0.607,0.714,and 0.714,and specificity 0.702,0.904,0.883,0.968,and 0.894(P<0.05).CONCLUSION The imaging features of CRC correlate with the short-term prognosis following laparoscopic radical resection.These findings provide valuable insights for clinical decision-making.展开更多
BACKGROUND Monomorphic epitheliotropic intestinal T-cell lymphoma(MEITL)is an uncom-mon and highly aggressive form of lymphoma that represents less than 1%of all non-Hodgkin’s lymphomas.At present,few reports have fo...BACKGROUND Monomorphic epitheliotropic intestinal T-cell lymphoma(MEITL)is an uncom-mon and highly aggressive form of lymphoma that represents less than 1%of all non-Hodgkin’s lymphomas.At present,few reports have focused on the imaging findings of MEITL,which poses significant challenges for clinical diagnosis.A 78-year-old female with recurrent vomiting and abdominal distension was admitted to our hospital.Magnetic resonance and^(18)F-fluorodeoxyglucose positron emission tomography/computed tomography(^(18)F-FDG PET/CT)examinations revealed multiple segmental malignant tumors in the small intestine with me-senteric lymph node metastasis.An endoscopic biopsy revealed MEITL.After three cycles of reduced-dose cyclophosphamide,vinorelbine,and prednisone che-motherapy,follow-up^(18)F-FDG PET/CT demonstrated a partial response to treatment.The patient was still alive after 6 months of follow-up.CONCLUSION Magnetic resonance imaging serves as a valuable tool in detecting malignant tumor lesions of MEITL,whereas^(18)F-FDG PET/CT offers additional assistance in tumor staging and assessing treatment efficacy.展开更多
BACKGROUND Congenital renal arteriovenous fistula(RAVF)is a clinically rare condition and frequently missed and misdiagnosed.Multimodal imaging techniques can pro-vide more detailed diagnostic information to help phys...BACKGROUND Congenital renal arteriovenous fistula(RAVF)is a clinically rare condition and frequently missed and misdiagnosed.Multimodal imaging techniques can pro-vide more detailed diagnostic information to help physicians more accurately diagnose and treat diseases.Combining imaging methods to diagnose RAVF has rarely been reported.CASE SUMMARY A 69-year-old female patient presented with gross hematuria that had persisted for 10 days.The patient underwent ultrasound examinations of the kidneys and renal blood vessels,enhanced computed tomography,three-dimensional com-puted tomography angiography,and digital subtraction angiography of the renal arteries.These revealed dilatation of the left renal vein and abnormal shunting between the left renal artery and vein.The patient was diagnosed with a left RAVF using combined multimodal imaging techniques.The patient was treated with left renal artery embolization immediately after renal arteriography.Hema-turia resolved following the left renal artery embolization without serious bleeding or other complications.The patient made a full recovery after one year of postoperative follow-up.CONCLUSION Multimodal imaging techniques complement each other when diagnosing RAVF,providing detailed diagnostic information that can aid in accurate diagnosis and treatment.In addition,this case reminds the sonographer to pay more attention to the color doppler flow imaging and blood flow spectrum when examining the kidney,so as to avoid misdiagnosis of renal cystic lesions as renal cysts and missed diagnosis of RAVF.展开更多
Existing Transformer-based image captioning models typically rely on the self-attention mechanism to capture long-range dependencies,which effectively extracts and leverages the global correlation of image features.Ho...Existing Transformer-based image captioning models typically rely on the self-attention mechanism to capture long-range dependencies,which effectively extracts and leverages the global correlation of image features.However,these models still face challenges in effectively capturing local associations.Moreover,since the encoder extracts global and local association features that focus on different semantic information,semantic noise may occur during the decoding stage.To address these issues,we propose the Local Relationship Enhanced Gated Transformer(LREGT).In the encoder part,we introduce the Local Relationship Enhanced Encoder(LREE),whose core component is the Local Relationship Enhanced Module(LREM).LREM consists of two novel designs:the Local Correlation Perception Module(LCPM)and the Local-Global Fusion Module(LGFM),which are beneficial for generating a comprehensive feature representation that integrates both global and local information.In the decoder part,we propose the Dual-level Multi-branch Gated Decoder(DMGD).It first creates multiple decoding branches to generate multi-perspective contextual feature representations.Subsequently,it employs the Dual-Level Gating Mechanism(DLGM)to model the multi-level relationships of these multi-perspective contextual features,enhancing their fine-grained semantics and intrinsic relationship representations.This ultimately leads to the generation of high-quality and semantically rich image captions.Experiments on the standard MSCOCO dataset demonstrate that LREGT achieves state-of-the-art performance,with a CIDEr score of 140.8 and BLEU-4 score of 41.3,significantly outperforming existing mainstream methods.These results highlight LREGT’s superiority in capturing complex visual relationships and resolving semantic noise during decoding.展开更多
Objective:In the Radiology Department of Mzuzu Central Hospital(MCH),daily training for radiographers now includes content on Computed Tomography(CT)image quality control and equipment maintenance to ensure the normal...Objective:In the Radiology Department of Mzuzu Central Hospital(MCH),daily training for radiographers now includes content on Computed Tomography(CT)image quality control and equipment maintenance to ensure the normal,continuous,and stable operation of the 16-slice spiral CT scanner.Methods:Through comprehensive analysis of relevant equipment,we have identified key parameters that significantly impact CT image quality.Innovative optimization strategies and solutions targeting these parameters have been developed and integrated into daily training programs.Furthermore,starting from an examination of prevalent failure modes observed in CT equipment,we delve into essential maintenance and preservation techniques that CT technologists must master to ensure optimal system performance.Results:(1)Crucial factors affecting CT image quality include artifacts,noise,partial volume effects,and surrounding gap phenomena,alongside spatial and density resolutions,CT dose,reconstruction algorithms,and human factors during the scanning process.In the daily training for radiographers,emphasis is placed on strictly implementing image quality control measures at every stage of the CT scanning process and skillfully applying advanced scanning and image processing techniques.By doing so,we can provide clinicians with accurate and reliable imaging references for diagnosis and treatment.(2)Strategies for CT equipment maintenance:①Environmental inspection of the CT room to ensure cleanliness and hygiene.②Rational and accurate operation,including calibration software proficiency.③Regular maintenance and servicing for minimizing machine downtime.④Maintenance of the CT X-ray tube.CT technicians can become proficient in equipment maintenance and upkeep techniques through training,which can significantly extend the service life of CT systems and reduce the occurrence of malfunctions.Conclusion:Through the regular implementation of rigorous CT image quality control training for radiology technicians,coupled with diligent and proactive CT equipment maintenance,we have observed profound and beneficial impacts on improving image quality.The accuracy and fidelity of radiological data ultimately leads to more accurate diagnoses and effective treatments.展开更多
Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth...Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure.Additionally,local data processing demands substantial manpower and hardware investments.Data isolation across different healthcare institutions hinders crossinstitutional collaboration in clinics and research.In this work,we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing,6G bandwidth,edge computing,federated learning,and blockchain technology.This system is called Cloud-MRI,aiming at solving the problems of MRI data storage security,transmission speed,artificial intelligence(AI)algorithm maintenance,hardware upgrading,and collaborative work.The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data(ISMRMRD)format.Then,the data are uploaded to the cloud or edge nodes for fast image reconstruction,neural network training,and automatic analysis.Then,the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services.The Cloud-MRI system will save the raw imaging data,reduce the risk of data loss,facilitate inter-institutional medical collaboration,and finally improve diagnostic accuracy and work efficiency.展开更多
Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provi...Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provide valuable insights into the health status of an individual,accurate diagnosis,and efficient treatment strategies for diseases.Super-resolution microscopy(SRM)has recently emerged as a cutting-edge tool for the study of blood cells,providing numerous advantages over traditional methods for examining subcellular structures and proteins.In this paper,we focus on outlining the fundamental principles of various SRM techniques and their applications in both normal and diseased states of blood cells.Furthermore,future prospects of SRM techniques in the analysis of blood cells are also discussed.展开更多
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat...To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.展开更多
Although guided image filtering(GIF) is known for preserving edges and fast computation,it may produce inaccurate outputs in depth map restoration.In this paper,a novel confidence-weighted GIF called mutual-structure ...Although guided image filtering(GIF) is known for preserving edges and fast computation,it may produce inaccurate outputs in depth map restoration.In this paper,a novel confidence-weighted GIF called mutual-structure weighted GIF(MSWGIF) is proposed,which replaces the mean filtering strategy in GIF during handling overlapping windows.The confidence value is composed of a depth term and a mutual-structure term,where the depth term is utilized to protect the edges of the output,and the mutual-structure term helps to select accurate windows during the structure characteristics of the guidance image are transferred to the output.Experimental results show that MSWGIF reduces the root mean square error(RMSE) by an average of 12.37%,and the average growth rate of correlation(CORR) is 0.07% on average.Additionally,the average growth rate of structure similarity index measure(SSIM) is 0.34%.展开更多
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
文摘BACKGROUND Colorectal cancer is a malignancy with a high risk of lymph node metastasis and poor prognosis,and thus requires an accurate diagnosis.AIM To assess the diagnostic value of combined magnetic resonance T2-weighted imaging(T2WI)and diffusion-weighted imaging(DWI)in colorectal cancer.METHODS We included 120 patients with suspected colorectal cancer who underwent magnetic resonance imaging.Surgical pathology was used as the gold standard for comparison.Combined T2WI and DWI showed higher diagnostic efficacy than either of the two methods used individually.RESULTS The combined method achieved 94.74%sensitivity,95.45%specificity,95.00%accuracy,94.74%positive predictive value,and 95.45%negative predictive value in qualitative diagnosis.It showed 94.44%sensitivity,95.00%specificity,94.74%accuracy,94.44%positive predictive value,and 95.00%negative predictive value in clinical staging.Finally,it showed 94.74%sensitivity,94.59%specificity,94.74%accuracy,94.74%positive predictive value,and 94.59%negative predictive value in diagnosing lymph node metastasis.These results were highly consistent with that of the gold standard.CONCLUSION This study combined T2WI and DWI for accurate diagnosis of colorectal cancer,aiding clinical staging and lymph node metastasis assessment.This approach is promising for clinical application.
文摘Glioblastoma multiforme(GBM)are the most aggressive and common tumors in the central nervous system.GBM are classified as grade IV according to the World Health Organization.The incidence of GBM slightly differs among countries.The etiology of GBM has not been entirely clarified.No risk factors such as smoking,chemicals or dietary can be identified for GBM.Only the exposure to high radiation dose such as radiotherapy of head and neck cancers have been reported to increase the risk of glioma tumors.In this review,the authors attempted to cover several aspects of GBM.This review was based on a collection of recent publications from different research fields but all related to GBM in order to shed the light on this disease.We highlighted the current insights of GBM in the aspects of epidemiology,pathogenesis,etiology,molecular genetics,imaging technologies,artificial intelligence and treatment.A literature review was conducted for GBM with relevant keywords.Although GBM was known since several decades,its causes are still confounding,and its early detection is often unpredictable.Since the hereditary aspect of GBM is very low,there remains as the common symptoms the interference with normal brain function,memory loss,unusual behavior,headaches and seizures.The progress in GBM treatment is not satisfactory even with the deployment of huge efforts and financial costs in many domains like gene therapy,surgery and chemoradiotherapy.Despite the rapid developments of the standard treatment for GBM,the trend of survival rate did not change among years.
基金supported by National Natural Science Foundation of China(Nos.32371433 and W2411083)the National Key Research and Development Program of China(No.2022YFB3203800)+4 种基金Guang Dong Basic and Applied Basic Research Foundation(No.2023A1515030207)Key Research and Development Program of Shaanxi(No.2024SF2-GJHX-30)Innovation Capability Support Program of Shaanxi(No.2022TD-52)Dual-chain Integration Special Program of Qin Chuang Yuan Construction(No.23LLRH0070)Xidian University Specially Funded Project for Interdisciplinary Exploration(Nos.TZJH2024035,TZJH2024031)。
文摘Although aggregation-induced emission(AIE) units enabled fluorophores as rotor-based probes for advancing biomedical imaging,the quantum-mechanism through which AIEgens enhanced fluorescence via aggregation or rotor effects remains poorly understood.Herein,we elucidate the mechanisms governing the tetraphenylethene(TPE)'s function(rotor-effect or aggregation-effect) in cyanine systems by tuning the methine-chain length from Cy3 to Cy5 to Cy7.Our study shows that modulating the frontier orbital energy difference(ΔE(DA)) between the cyanine and TPE allows TPE to display AIE property in Cy3,act as a rotor in Cy5 uniquely devoid of aggregation activation,or neither in Cy7.In vitro and in vivo results further demonstrate that rotor-specific TPE-Cy5 can serve as a sensitive probe for imaging tumor rigidity.We anticipate that continued advancements in TPE rotor visualization will open new avenues for understanding the biophysical behaviors of tumors.
文摘Perianal fistulising Crohn’s disease is a challenging complication that can affect up to 20%of patients with Crohn’s disease and is associated with significant morbidity.Despite advances in medical therapies,particularly anti-tumor necrosis factor agents,the majority of patients still require surgical intervention.Accurate diagnosis and monitoring are essential to optimise outcomes and guide multidisciplinary management.Although clinical scoring systems such as the perianal disease activity index are widely used,their subjective application limits their reproducibility and reliability,underscoring the need for more objective methods of evaluating perianal fistulising Crohn’s disease activity.Imaging has thus become central to the objective assessment of perianal fistulising Crohn’s disease,with magnetic resonance imaging(MRI)recognised as the gold standard in view of its ability to provide clear,detailed images of the perianal region in a radiation-free manner.Guidelines also endorse the use of imaging modalities such as endoanal ultrasound and transperineal ultrasound as viable alternatives to MRI for the assessment of perianal fistulising Crohn’s disease in centres with appropriate expertise.This article aims to evaluate and compare the diagnostic accuracy and clinical utility of MRI,endoanal ultrasound,and transperineal ultrasound in the assessment of perianal fistulising Crohn’s disease,highlighting their respective strengths,limitations,and roles in clinical practice.
基金National Natural Science Foundation of China,Grant/Award Number:62303275International Alliance for Cancer Early Detection,Grant/Award Numbers:C28070/A30912,C73666/A31378Wellcome/EPSRC Centre for Interventional and Surgical Sciences,Grant/Award Number:203145Z/16/Z。
文摘Automated prostate cancer detection in magnetic resonance imaging(MRI)scans is of significant importance for cancer patient management.Most existing computer-aided diagnosis systems adopt segmentation methods while object detection approaches recently show promising results.The authors have(1)carefully compared performances of most-developed segmentation and object detection methods in localising prostate imaging reporting and data system(PIRADS)-labelled prostate lesions on MRI scans;(2)proposed an additional customised set of lesion-level localisation sensitivity and precision;(3)proposed efficient ways to ensemble the segmentation and object detection methods for improved performances.The ground-truth(GT)perspective lesion-level sensitivity and prediction-perspective lesion-level precision are reported,to quantify the ratios of true positive voxels being detected by algorithms over the number of voxels in the GT labelled regions and predicted regions.The two networks are trained independently on 549 clinical patients data with PIRADS-V2 as GT labels,and tested on 161 internal and 100 external MRI scans.At the lesion level,nnDetection outperforms nnUNet for detecting both PIRADS≥3 and PIRADS≥4 lesions in majority cases.For example,at the average false positive prediction per patient being 3,nnDetection achieves a greater Intersection-of-Union(IoU)-based sensitivity than nnUNet for detecting PIRADS≥3 lesions,being 80.78%�1.50%versus 60.40%�1.64%(p<0.01).At the voxel level,nnUnet is in general superior or comparable to nnDetection.The proposed ensemble methods achieve improved or comparable lesion-level accuracy,in all tested clinical scenarios.For example,at 3 false positives,the lesion-wise ensemble method achieves 82.24%�1.43%sensitivity versus 80.78%�1.50%(nnDetection)and 60.40%�1.64%(nnUNet)for detecting PIRADS≥3 lesions.Consistent conclusions are also drawn from results on the external data set.
基金supported by the National Natural Science Foundation of China(Grant No.12175183)。
文摘Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.
基金supported by the following grants:National Natural Science Foundation of China(grant nos.92354305,32271428,and 32201132)National Key R&D Program of China(grant no.2022YFC3401100)+1 种基金Fund for Knowledge Innovation of Wuhan Science and Technology Bureau(grant no.2022020801010558)Director Fund of WNLO.
文摘The rapid development of super-resolution microscopy has made it possible to observe subcellular structures and dynamic behaviors in living cells with nanoscale spatial resolution, greatly advancing progress in life sciences. As hardware technology continues to evolve, the availability of new fluorescent probes with superior performance is becoming increasingly important. In recent years, fluorescent nanoprobes (FNPs) have emerged as highly promising fluorescent probes for bioimaging due to their high brightness and excellent photostability. This paper focuses on the development and applications of FNPs as probes for live-cell super-resolution imaging. It provides an overview of different super-resolution methods, discusses the performance requirements for FNPs in these methods, and reviews the latest applications of FNPs in the super-resolution imaging of living cells. Finally, it addresses the challenges and future outlook in this field.
基金Supported by Chutian Talents of Hubei,No.CTYC001Talent Project of Hubei Cancer Hospital,No.2025HBCHLHRC001Clinical Medical Science and Technology of Jinan,No.202134053.
文摘BACKGROUND The differential diagnosis between hepatocellular carcinoma(HCC)and intrahepatic cholangiocarcinoma(ICC)is crucial.The individual differences of patients increase the complexity of diagnosis.Currently,imaging diagnosis mainly relies on conventional computed tomography and magnetic resonance imaging(MRI),but few studies have investigated MRI functional imaging.This study combined MRI functional imaging including intravoxel incoherent motion(IVIM)and diffusion kurtosis imaging(DKI),facilitating differential diagnosis.AIM To explore the differential diagnostic value of IVIM imaging and DKI in differentiating between HCC and ICC.METHODS A total of 58 patients who underwent multi-b-value diffusion weighted imaging(DWI)on a 3.0 T magnetic MRI scanner were enrolled in this study.Standard apparent diffusion coefficient(SADC),IVIM quantitative parameters,including pure diffusion coefficient(D),pseudo diffusion coefficient(Dstar),and perfusion fraction(f),as well as the DKI quantitative parameters mean diffusion coefficient(MD)and mean kurtosis coefficient(MK)were computed by multi-b DWI images.Theχ2 test was used for classified data,and a one-way analysis of variance was performed for counted data.P<0.05 indicated statistical significance.The diagnostic value of parameters in HCC and ICC was analyzed using the receiver operating characteristic(ROC)curve.RESULTS The SADC,D,and MD values were significantly lower in the HCC group compared to the ICC group,whereas MK was significantly higher in the HCC group than in the ICC group(P<0.05).No significant difference in Dstar and f was observed between the HCC group and the ICC group(P>0.05).The optimal cutoff levels of the total values of SADC,D,MK,MD and all associated parameters were 1.25×10^(-3)mm^(2)/second,1.32×10^(-3)mm^(2)/second,650.2×10^(-3)mm^(2)/second,1.41×10^(-3)mm^(2)/second and 0.46×10^(-3)mm^(2)/second,respectively.The sensitivity of diagnosis was 95%,80%,90%,100%,and 70%,respectively,the specificity of diagnosis was 67.39%,69.57%,67.39%,43.48%,and 93.48%,respectively,and the area under the ROC curve was 0.874,0.793,0.733,0.757,and 0.895,respectively.CONCLUSION SADC,D,MK,and MD could be used to distinguish HCC from ICC,with the diagnostic value reaching a maximum after establishing a joint model.
基金financially supported by the National Natural Science Foundation of China(Nos.32025021,31971292,32111540257)the Zhejiang Province Financial Supporting(Nos.2020C03110 and 2023C04017)the Key Scientific and Technological Special Project of Ningbo City(No.2020Z094)。
文摘Visual assessment of tumor metastatic capacity is crucial for predicting hepatocellular carcinoma(HCC)prognosis and guiding clinical therapeutic approaches.In this study,we developed an enzyme-responsive probe based on the peptide GK10,which is selectively cleaved by matrix metalloproteinase-9(MMP-9),a critical marker for metastasis in HCC.The GK10 peptide was conjugated with near-infrared fiuorescent molecule IR783,fiuorescent quencher black hole quencher 3(BHQ3),and magnetic resonance(MR)contrast agent DOTA-Gd,forming the IR783-GK10-BHQ3-Gd probe.Upon MMP-9 cleavage of GK10,BHQ3 is released from the probe,thereby amplifying the previously quenched IR783 fiuorescence signal.In vitro experiments demonstrate the probe's impressive detection limit for MMP-9,as low as 1.84 ng/m L.Moreover,in vivo imaging results reveal that the probe can differentiate liver cancers with varying metastatic capacities.The fiuorescence and MR imaging signal intensity of high metastatic HCC are approximately1.2 times greater than that of low metastatic HCC.Thus,this engineered probe holds promise as a valuable tool for evaluating HCC metastatic capacity through fiuorescence-MR dual-mode imaging.
基金Supported by Bozhou Key Research and Development Project,No.bzzc2020031.
文摘BACKGROUND Fistula-in-ano is an abnormal tunnel formation linking the anal canal with the perineum and perianal skin.Multiple imagining methods are available to evaluate it,among which magnetic resonance imaging(MRI)is the most advanced nonin-vasive preoperative method.However,it is limited in its visualization function.AIM To investigate the use of intraluminal MRI for perianal fistulas via a novel direct MRI fistulography method.METHODS We mixed 3%hydrogen peroxide(HP)with gadolinium for HPMRI fistulogra-phy,retrospectively analyzing 60 cases of complex/recurrent fistula-in-ano using physical examination,trans-perineal ultrasonography(TPUS),low-spatial-reso-lution MRI,and high-resolution direct HPMRI fistulography.We assessed detec-tion rates of fistula tracks,internal openings,their relationship with anal sphinc-ters,and perianal abscesses using statistical analyses,including interobserver agreement(Kappa statistic),and compared results with intraoperative findings.RESULTS Surgical confirmation in 60 cases showed that high-resolution direct HPMRI fis-tulography provided superior detection rates for internal openings(153)and fistula tracks(162)compared to physical exams,TPUS,and low-spatial-resolution MRI(Z>5.7,P<0.05).The effectiveness of physical examination and TPUS was also inferior to that of our method for detecting perianal abscesses(54)(Z=6.773,3.694,P<0.05),whereas that of low-spatial-resolution MRI was not significantly different(Z=1.851,P=0.06).High-resolution direct HPMRI fistulography also achieved the highest interobserver agreement(Kappa:0.89,0.85,and 0.80),while low-spatial-resolution MRI showed moderate agreement(Kappa:0.78,0.74,and 0.69).TPUS and physical examination had lower agreement(Kappa range:0.33-0.63).CONCLUSION High-resolution direct HPMRI fistulography enhances the visualization of recurrent and complex fistula-in-ano,including branched fistulas,allowing for precise planning and improved surgical outcomes.
文摘BACKGROUND Colorectal cancer(CRC)is a malignant tumor with high morbidity and mortality rates worldwide.With the development of medical imaging technology,imaging features are playing an increasingly important role in the prognostic evaluation of CRC.Laparoscopic radical resection is a common surgical approach for treating CRC.However,research on the link between preoperative imaging and short-term prognosis in this context is limited.We hypothesized that specific preope-rative imaging features can predict the short-term prognosis in patients under-going laparoscopic CRC resection.AIM To investigate the imaging features of CRC and analyze their correlation with the short-term prognosis of laparoscopic radical resection.METHODS This retrospective study conducted at the Affiliated Cancer Hospital of Shandong First Medical University included 122 patients diagnosed with CRC who under-went laparoscopic radical resection between January 2021 and February 2024.All patients underwent magnetic resonance imaging(MRI)and were diagnosed with CRC through pathological examination.MRI data and prognostic indicators were collected 30 days post-surgery.Logistic regression analysis identified imaging fea-tures linked to short-term prognosis,and a receiver operating characteristic(ROC)curve was used to evaluate the predictive value.RESULTS Among 122 patients,22 had irregular,low-intensity tumors with adjacent high signals.In 55,tumors were surrounded by alternating signals in the muscle layer.In 32,tumors extended through the muscular layer and blurred boundaries with perienteric adipose tissue.Tumor signals appeared in the adjacent tissues in 13 patients with blurred gaps.Logistic regression revealed differences in longitudinal tumor length,axial tumor length,volume transfer constant,plasma volume fraction,and apparent diffusion coefficient among patients with varying prognostic results.ROC analysis indicated that the areas under the curve for these parameters were 0.648,0.927,0.821,0.809,and 0.831,respectively.Sensitivity values were 0.643,0.893,0.607,0.714,and 0.714,and specificity 0.702,0.904,0.883,0.968,and 0.894(P<0.05).CONCLUSION The imaging features of CRC correlate with the short-term prognosis following laparoscopic radical resection.These findings provide valuable insights for clinical decision-making.
基金Supported by the National Natural Science Foundation of China,No.82160330the Science and Technology Program of the Health Commission of Jiangxi Province,No.2025110045+1 种基金the Ganzhou Science and Technology Planning Project,No.GZ2024YLJ016,No.GZ2024YLJ026,and No.GZ2024ZSF064the Ganzhou Health Commission Scientific Research Planning Project,No.GZWJW202402108.
文摘BACKGROUND Monomorphic epitheliotropic intestinal T-cell lymphoma(MEITL)is an uncom-mon and highly aggressive form of lymphoma that represents less than 1%of all non-Hodgkin’s lymphomas.At present,few reports have focused on the imaging findings of MEITL,which poses significant challenges for clinical diagnosis.A 78-year-old female with recurrent vomiting and abdominal distension was admitted to our hospital.Magnetic resonance and^(18)F-fluorodeoxyglucose positron emission tomography/computed tomography(^(18)F-FDG PET/CT)examinations revealed multiple segmental malignant tumors in the small intestine with me-senteric lymph node metastasis.An endoscopic biopsy revealed MEITL.After three cycles of reduced-dose cyclophosphamide,vinorelbine,and prednisone che-motherapy,follow-up^(18)F-FDG PET/CT demonstrated a partial response to treatment.The patient was still alive after 6 months of follow-up.CONCLUSION Magnetic resonance imaging serves as a valuable tool in detecting malignant tumor lesions of MEITL,whereas^(18)F-FDG PET/CT offers additional assistance in tumor staging and assessing treatment efficacy.
文摘BACKGROUND Congenital renal arteriovenous fistula(RAVF)is a clinically rare condition and frequently missed and misdiagnosed.Multimodal imaging techniques can pro-vide more detailed diagnostic information to help physicians more accurately diagnose and treat diseases.Combining imaging methods to diagnose RAVF has rarely been reported.CASE SUMMARY A 69-year-old female patient presented with gross hematuria that had persisted for 10 days.The patient underwent ultrasound examinations of the kidneys and renal blood vessels,enhanced computed tomography,three-dimensional com-puted tomography angiography,and digital subtraction angiography of the renal arteries.These revealed dilatation of the left renal vein and abnormal shunting between the left renal artery and vein.The patient was diagnosed with a left RAVF using combined multimodal imaging techniques.The patient was treated with left renal artery embolization immediately after renal arteriography.Hema-turia resolved following the left renal artery embolization without serious bleeding or other complications.The patient made a full recovery after one year of postoperative follow-up.CONCLUSION Multimodal imaging techniques complement each other when diagnosing RAVF,providing detailed diagnostic information that can aid in accurate diagnosis and treatment.In addition,this case reminds the sonographer to pay more attention to the color doppler flow imaging and blood flow spectrum when examining the kidney,so as to avoid misdiagnosis of renal cystic lesions as renal cysts and missed diagnosis of RAVF.
基金supported by the Natural Science Foundation of China(62473105,62172118)Nature Science Key Foundation of Guangxi(2021GXNSFDA196002)+1 种基金in part by the Guangxi Key Laboratory of Image and Graphic Intelligent Processing under Grants(GIIP2302,GIIP2303,GIIP2304)Innovation Project of Guang Xi Graduate Education(2024YCXB09,2024YCXS039).
文摘Existing Transformer-based image captioning models typically rely on the self-attention mechanism to capture long-range dependencies,which effectively extracts and leverages the global correlation of image features.However,these models still face challenges in effectively capturing local associations.Moreover,since the encoder extracts global and local association features that focus on different semantic information,semantic noise may occur during the decoding stage.To address these issues,we propose the Local Relationship Enhanced Gated Transformer(LREGT).In the encoder part,we introduce the Local Relationship Enhanced Encoder(LREE),whose core component is the Local Relationship Enhanced Module(LREM).LREM consists of two novel designs:the Local Correlation Perception Module(LCPM)and the Local-Global Fusion Module(LGFM),which are beneficial for generating a comprehensive feature representation that integrates both global and local information.In the decoder part,we propose the Dual-level Multi-branch Gated Decoder(DMGD).It first creates multiple decoding branches to generate multi-perspective contextual feature representations.Subsequently,it employs the Dual-Level Gating Mechanism(DLGM)to model the multi-level relationships of these multi-perspective contextual features,enhancing their fine-grained semantics and intrinsic relationship representations.This ultimately leads to the generation of high-quality and semantically rich image captions.Experiments on the standard MSCOCO dataset demonstrate that LREGT achieves state-of-the-art performance,with a CIDEr score of 140.8 and BLEU-4 score of 41.3,significantly outperforming existing mainstream methods.These results highlight LREGT’s superiority in capturing complex visual relationships and resolving semantic noise during decoding.
基金supported by the First Affiliated Hospital of Xi’an Jiaotong University Teaching Reform Project(Grant No.JG2023-0206 and JG2022-0324).
文摘Objective:In the Radiology Department of Mzuzu Central Hospital(MCH),daily training for radiographers now includes content on Computed Tomography(CT)image quality control and equipment maintenance to ensure the normal,continuous,and stable operation of the 16-slice spiral CT scanner.Methods:Through comprehensive analysis of relevant equipment,we have identified key parameters that significantly impact CT image quality.Innovative optimization strategies and solutions targeting these parameters have been developed and integrated into daily training programs.Furthermore,starting from an examination of prevalent failure modes observed in CT equipment,we delve into essential maintenance and preservation techniques that CT technologists must master to ensure optimal system performance.Results:(1)Crucial factors affecting CT image quality include artifacts,noise,partial volume effects,and surrounding gap phenomena,alongside spatial and density resolutions,CT dose,reconstruction algorithms,and human factors during the scanning process.In the daily training for radiographers,emphasis is placed on strictly implementing image quality control measures at every stage of the CT scanning process and skillfully applying advanced scanning and image processing techniques.By doing so,we can provide clinicians with accurate and reliable imaging references for diagnosis and treatment.(2)Strategies for CT equipment maintenance:①Environmental inspection of the CT room to ensure cleanliness and hygiene.②Rational and accurate operation,including calibration software proficiency.③Regular maintenance and servicing for minimizing machine downtime.④Maintenance of the CT X-ray tube.CT technicians can become proficient in equipment maintenance and upkeep techniques through training,which can significantly extend the service life of CT systems and reduce the occurrence of malfunctions.Conclusion:Through the regular implementation of rigorous CT image quality control training for radiology technicians,coupled with diligent and proactive CT equipment maintenance,we have observed profound and beneficial impacts on improving image quality.The accuracy and fidelity of radiological data ultimately leads to more accurate diagnoses and effective treatments.
基金supported by the National Natural Science Foundation of China(62122064,62331021,62371410)the Natural Science Foundation of Fujian Province of China(2023J02005 and 2021J011184)+1 种基金the President Fund of Xiamen University(20720220063)the Nanqiang Outstanding Talents Program of Xiamen University.
文摘Magnetic resonance imaging(MRI)plays an important role in medical diagnosis,generating petabytes of image data annually in large hospitals.This voluminous data stream requires a significant amount of network bandwidth and extensive storage infrastructure.Additionally,local data processing demands substantial manpower and hardware investments.Data isolation across different healthcare institutions hinders crossinstitutional collaboration in clinics and research.In this work,we anticipate an innovative MRI system and its four generations that integrate emerging distributed cloud computing,6G bandwidth,edge computing,federated learning,and blockchain technology.This system is called Cloud-MRI,aiming at solving the problems of MRI data storage security,transmission speed,artificial intelligence(AI)algorithm maintenance,hardware upgrading,and collaborative work.The workflow commences with the transformation of k-space raw data into the standardized Imaging Society for Magnetic Resonance in Medicine Raw Data(ISMRMRD)format.Then,the data are uploaded to the cloud or edge nodes for fast image reconstruction,neural network training,and automatic analysis.Then,the outcomes are seamlessly transmitted to clinics or research institutes for diagnosis and other services.The Cloud-MRI system will save the raw imaging data,reduce the risk of data loss,facilitate inter-institutional medical collaboration,and finally improve diagnostic accuracy and work efficiency.
基金supported by the following grants:National Key R&D Program of China(Grant no.2022YFC3401100)National Natural Science Foundation of China(Grant nos.32271428,92054110,32201132 and 31600692).
文摘Blood cells are the most integral part of the body,which are made up of erythrocytes,platelets and white blood cells.The examination of subcellular structures and proteins within blood cells at the nanoscale can provide valuable insights into the health status of an individual,accurate diagnosis,and efficient treatment strategies for diseases.Super-resolution microscopy(SRM)has recently emerged as a cutting-edge tool for the study of blood cells,providing numerous advantages over traditional methods for examining subcellular structures and proteins.In this paper,we focus on outlining the fundamental principles of various SRM techniques and their applications in both normal and diseased states of blood cells.Furthermore,future prospects of SRM techniques in the analysis of blood cells are also discussed.
基金supported by the National Key R&D Program of China(No.2022YFB3205101)NSAF(No.U2230116)。
文摘To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.
基金supported by the National Key Research and Development Program of China (No.2019YFB2204302)。
文摘Although guided image filtering(GIF) is known for preserving edges and fast computation,it may produce inaccurate outputs in depth map restoration.In this paper,a novel confidence-weighted GIF called mutual-structure weighted GIF(MSWGIF) is proposed,which replaces the mean filtering strategy in GIF during handling overlapping windows.The confidence value is composed of a depth term and a mutual-structure term,where the depth term is utilized to protect the edges of the output,and the mutual-structure term helps to select accurate windows during the structure characteristics of the guidance image are transferred to the output.Experimental results show that MSWGIF reduces the root mean square error(RMSE) by an average of 12.37%,and the average growth rate of correlation(CORR) is 0.07% on average.Additionally,the average growth rate of structure similarity index measure(SSIM) is 0.34%.