The electron density and temperature key properties of the neutral-magnetized plasma in the solar corona, which are predicted with a novel model, provide an interesting window along the whole solar cycle. In this work...The electron density and temperature key properties of the neutral-magnetized plasma in the solar corona, which are predicted with a novel model, provide an interesting window along the whole solar cycle. In this work, we test the quantitative validity of the model and prove that the Coronal Density and Temperature (CODET) is reliable. Furthermore, this work contrasts the CODET model results with alternative observational remote and in-situ datasets during the simplest conditions of the quiescent corona near the solar minimum. This successful outcome/validation of the CODET model allowed a good qualitative density and temperature retrieval in the solar corona covering a large portion of time interval from solar cycles 23 and 24.展开更多
We reach a thermodynamic interpretation of the CODET model and its accurate electron density and temperature prediction, grounded on the physics of hydro magnetism in global equilibrium. The thermodynamic interpretati...We reach a thermodynamic interpretation of the CODET model and its accurate electron density and temperature prediction, grounded on the physics of hydro magnetism in global equilibrium. The thermodynamic interpretation finds consistency with the model of a magneto-matter medium possessing a 3-D Langmuir structure. That medium is diamagnetic in the context of ideal magnetohydrodynamic (MHD). It is shown that this magneto-matter has unusual characteristics consistent with assuming that the low quiescent solar corona possesses a nature-state, non yet studied. It is further noticed that this is wholly consistent with the CODET model prediction of a polytropic anomalous index for the electron gas of the Sun’s corona. Constitutive properties are derived from this novel state of nature, like magnetic permeability properties and non-dispersive acoustic speed. This non-dispersive acoustic speed is also expected to predict the observed equilibration time for the 1.1 to 1.3R<sub>⊙</sub> quiescent corona during the solar minimum from 2008 to 2009.展开更多
文摘The electron density and temperature key properties of the neutral-magnetized plasma in the solar corona, which are predicted with a novel model, provide an interesting window along the whole solar cycle. In this work, we test the quantitative validity of the model and prove that the Coronal Density and Temperature (CODET) is reliable. Furthermore, this work contrasts the CODET model results with alternative observational remote and in-situ datasets during the simplest conditions of the quiescent corona near the solar minimum. This successful outcome/validation of the CODET model allowed a good qualitative density and temperature retrieval in the solar corona covering a large portion of time interval from solar cycles 23 and 24.
文摘We reach a thermodynamic interpretation of the CODET model and its accurate electron density and temperature prediction, grounded on the physics of hydro magnetism in global equilibrium. The thermodynamic interpretation finds consistency with the model of a magneto-matter medium possessing a 3-D Langmuir structure. That medium is diamagnetic in the context of ideal magnetohydrodynamic (MHD). It is shown that this magneto-matter has unusual characteristics consistent with assuming that the low quiescent solar corona possesses a nature-state, non yet studied. It is further noticed that this is wholly consistent with the CODET model prediction of a polytropic anomalous index for the electron gas of the Sun’s corona. Constitutive properties are derived from this novel state of nature, like magnetic permeability properties and non-dispersive acoustic speed. This non-dispersive acoustic speed is also expected to predict the observed equilibration time for the 1.1 to 1.3R<sub>⊙</sub> quiescent corona during the solar minimum from 2008 to 2009.