期刊文献+
共找到700篇文章
< 1 2 35 >
每页显示 20 50 100
Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction
1
作者 Anis Ben Ghorbal Azedine Grine +1 位作者 Marwa M.Eid El-Sayed M.El-Kenawy 《Computer Modeling in Engineering & Sciences》 2025年第8期2001-2028,共28页
Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes.This study introduces a hybrid ap... Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes.This study introduces a hybrid approach integrating Long Short-Term Memory(LSTM)networks with the Hybrid Greylag Goose and Particle Swarm Optimization(GGPSO)algorithm to optimize preterm birth classification using Electrohysterogram signals.The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings,capturing key physiological features such as contraction patterns,entropy,and statistical variations.Statistical analysis and feature selection methods are applied to identify the most relevant predictors and enhance model interpretability.LSTM networks effectively capture temporal patterns in uterine activity,while the GGPSO algorithm finetunes hyperparameters,mitigating overfitting and improving classification accuracy.The proposed GGPSO-optimized LSTM model achieved superior performance with 97.34%accuracy,96.91%sensitivity,97.74%specificity,and 97.23%F-score,significantly outperforming traditional machine learning approaches and demonstrating the effectiveness of hybrid metaheuristic optimization in enhancing deep learning models for clinical applications.By combining deep learning withmetaheuristic optimization,this study contributes to advancing intelligent auto-diagnosis systems,facilitating early detection of pretermbirth risks and timely medical interventions. 展开更多
关键词 Preterm birth prediction electrohysterogram signals LSTM time-series analysis metaheuristic optimization auto-diagnosis clinical decision support
在线阅读 下载PDF
Advancing Malaria Prediction in Uganda through AI and Geospatial Analysis Models
2
作者 Maria Assumpta Komugabe Richard Caballero +1 位作者 Itamar Shabtai Simon Peter Musinguzi 《Journal of Geographic Information System》 2024年第2期115-135,共21页
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e... The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives. 展开更多
关键词 MALARIA Predictive Modeling Geospatial Analysis Climate Factors Preventive Measures
暂未订购
X射线ICT能谱硬化的校正研究 被引量:5
3
作者 刘恩承 《CT理论与应用研究(中英文)》 1999年第1期32-35,共4页
本文讨论X射线ICT中,由于X射线束的非单色性而引起的能谱硬化问题,这种能谱硬化应该被校正。从实验中,我们获得了校正曲线,并给出了相应的数学模型。我们建议采用专门的软件来进行这种校正。
关键词 能谱硬化 X射线 ICT 校正 CT 工业CT
在线阅读 下载PDF
Multi-Criteria Prediction Mechanism for Vehicular Wi-Fi Offloading 被引量:1
4
作者 Mahmoud Alawi Raed Alsaqour +2 位作者 Abdi Abdalla Maha Abdelhaq Mueen Uddin 《Computers, Materials & Continua》 SCIE EI 2021年第11期2313-2337,共25页
The growing demands of vehicular network applications,which have diverse networking and multimedia capabilities that passengers use while traveling,cause an overload of cellular networks.This scenario affects the qual... The growing demands of vehicular network applications,which have diverse networking and multimedia capabilities that passengers use while traveling,cause an overload of cellular networks.This scenario affects the quality of service(QoS)of vehicle and non-vehicle users.Nowadays,wireless fidelity access points Wi-Fi access point(AP)and fourth generation long-term evolution advanced(4G LTE-A)networks are broadly accessible.Wi-Fi APs can be utilized by vehicle users to stabilize 4G LTE-A networks.However,utilizing the opportunistic Wi-Fi APs to offload the 4G LTE-A networks in a vehicular ad hoc network environment is a relatively difficult task.This condition is due to the short coverage of Wi-Fi APs and weak deployment strategies of APs.Many studies have proposed that offloading mechanisms depend on the historical Wi-Fi connection patterns observed by an interest vehicle in making an offloading decision.However,depending solely on the historical connection patterns affects the prediction accuracy and offloading ratio of most existing mechanisms even when AP location information is available.The present study proposed a multi-criteria wireless availability prediction(MWAP)mechanism,which utilizes historical connection patterns,historical data rate information,and vehicular trajectory computation to predict the next available AP and its expected data capacity in making offloading decisions.The proposed mechanism is decentralized,where each vehicle makes the prediction by itself.This characteristic helps the vehicle users make a proactive offloading decision that maintains the QoS for different applications.A simulation utilizing MATLAB was conducted to evaluate the performance of the proposed mechanism and benchmark it with related state-of-the-art mechanisms.A comparison was made based on the prediction error and offloading ratio of the proposed mechanism in several scenarios.The MWAP mechanism exhibited a lower prediction error(i.e.,below 20%)and higher offloading ratio(i.e.,above 90%)than the existing mechanisms for several tested scenarios. 展开更多
关键词 Vehicular network markov predictor 4G LTE-A Wi-Fi offloading prediction model heterogeneous network
在线阅读 下载PDF
X射线TICT在复合材料工件检测中的射束硬化拟合校正研究 被引量:5
5
作者 彭光含 蔡新华 +2 位作者 韩忠 周日峰 杨学恒 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第9期1882-1885,共4页
X射线TICT中,X射线透射物质时,发生了能谱硬化现象。使图像重建时出现伪影。因此必须进行修正。文中对X射线硬化现象进行了分析,探讨了X射线TICT在检测复合材料工件中,X射线射束和与透射厚度的关系,并根据Beer定律和X射线与物质作用的特... X射线TICT中,X射线透射物质时,发生了能谱硬化现象。使图像重建时出现伪影。因此必须进行修正。文中对X射线硬化现象进行了分析,探讨了X射线TICT在检测复合材料工件中,X射线射束和与透射厚度的关系,并根据Beer定律和X射线与物质作用的特点,通过获取X射线射束和数据,首先拟合出射束和与透射厚度的关系式,然后推导出X射线射束和校正为单色射线射束和的等效厚度与透射厚度的关系及其等效方法,最终得出X射线TICT在检测复合材料工件中X射线等效单色射线的衰减系数的射束硬化拟合值,再对此衰减系数拟合值进行卷积反投影重构,即可有效消除X射线TICT在检测复合材料工件中射束硬化造成的影响。 展开更多
关键词 X射线 透射式工业计算机断层扫描成像技术 射束硬化 拟合校正 射束和 复合材料
在线阅读 下载PDF
X射线TICT中射束硬化拟合校正研究 被引量:3
6
作者 彭光含 杨学恒 +3 位作者 韩忠 周日峰 蔡新华 乔闹生 《光电工程》 EI CAS CSCD 北大核心 2006年第11期137-141,共5页
X射线TICT中,由于射线硬化现象使图像重建时出现伪影。文中对X射线硬化现象进行了分析,探讨了在均匀物质中,X射线射束和与透射厚度的关系,并根据Beer定律和X射线与物质作用的特点,通过获取X射线射束和数据,首先拟合出射束和与透射厚度... X射线TICT中,由于射线硬化现象使图像重建时出现伪影。文中对X射线硬化现象进行了分析,探讨了在均匀物质中,X射线射束和与透射厚度的关系,并根据Beer定律和X射线与物质作用的特点,通过获取X射线射束和数据,首先拟合出射束和与透射厚度的关系式,然后得出X射线射束和校正为单色射线射束和的等效厚度与透射厚度的关系及其等效方法,最终得出X射线等效单色射线的衰减系数的拟合值,再对此衰减系数拟合值进行卷积反投影重构,即可有效消除X射线射束硬化的影响。 展开更多
关键词 X射线 计算机断层扫描成像技术 射束硬化 拟合校正 射束和
在线阅读 下载PDF
Continuous-Time Prediction of Industrial Paste Thickener System With Differential ODE-Net 被引量:3
7
作者 Zhaolin Yuan Xiaorui Li +4 位作者 Di Wu Xiaojuan Ban Nai-Qi Wu Hong-Ning Dai Hao Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期686-698,共13页
It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of ... It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types. 展开更多
关键词 Industrial 24 paste thickener ordinary differential equation(ODE)-net recurrent neural network time series prediction
在线阅读 下载PDF
以法律手段规范ICT系统集成项目
8
作者 张驰 《通信企业管理》 2015年第12期82-84,共3页
ICT系统集成项目需要法律支撑 ICT是信息通信技术(Information Communication Technology)的英文缩写,它是信息技术与通信技术相融合而形成的一个新的概念和新的技术领域。近年来电信企业在ICT系统集成业务领域的发展非常迅猛,ICT系... ICT系统集成项目需要法律支撑 ICT是信息通信技术(Information Communication Technology)的英文缩写,它是信息技术与通信技术相融合而形成的一个新的概念和新的技术领域。近年来电信企业在ICT系统集成业务领域的发展非常迅猛,ICT系统集成业务已经成为电信运营商的一个重要的转型业务。 展开更多
关键词 系统集成业务 集成项目 ICT 法律手段 信息通信技术 业务领域 电信运营商 法律支撑
原文传递
Deep Learning for Multivariate Prediction of Building Energy Performance of Residential Buildings
9
作者 Ibrahim Aliyu Tai-Won Um +2 位作者 Sang-Joon Lee Chang Gyoon Lim Jinsul Kim 《Computers, Materials & Continua》 SCIE EI 2023年第6期5947-5964,共18页
In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effectiv... In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE. 展开更多
关键词 Artificial intelligence(AI) convolutional neural network(CNN) cooling load deep learning ENERGY energy load energy building performance heating load PREDICTION
在线阅读 下载PDF
ICT as an Instrument of Enhanced Banking System
10
作者 Emmanuel N. Ekwonwune Deborah U. Egwuonwu +1 位作者 Leticia C. Elebri Kanayo K. Uka 《Journal of Computer and Communications》 2017年第1期53-60,共8页
This study investigated the role of Information and Communications Technology in an enhanced banking operation using Diamond Bank Plc, Imo State as a case study. The study was motivated by the fact that most industrie... This study investigated the role of Information and Communications Technology in an enhanced banking operation using Diamond Bank Plc, Imo State as a case study. The study was motivated by the fact that most industries, financial institutions rely on gathering, processing, analyzing, and providing information in order to meet the needs of customers. It was based on data primarily, collected from both the primary and secondary sources which seek to investigate role of Information and Communications Technology in the banking industry. This piece of work, through direct investigation, interviews and questionnaires used to examine the role of Information and Communication Technology, plays in the banking industries and how it has affected the employment generation in the industries. It was gathered that ICT has positively affected the bank, the employees and the customers. The result also shows the application has improved banking services, maintained high level of proficiency and efficiency, reduced the long time spent on queues and brought about increase in employment opportunities. 展开更多
关键词 ICT BANKS Information Technology EFFICIENCY TECHNOLOGICAL INNOVATION
暂未订购
借EPON助ICT社区信息化发展
11
作者 张驰 《通信企业管理》 2015年第6期70-72,共3页
作为电信运营商转型的重要业务,ICT业务包括了物联网、行业信息化、弱电智能化、社区信息化等诸多业务。目前,ICT业务发展迅速,其中社区信息化业务增长尤其迅猛。社区信息化业务主要是指在住宅小区中的智能信息化业务,具体包括综合布线... 作为电信运营商转型的重要业务,ICT业务包括了物联网、行业信息化、弱电智能化、社区信息化等诸多业务。目前,ICT业务发展迅速,其中社区信息化业务增长尤其迅猛。社区信息化业务主要是指在住宅小区中的智能信息化业务,具体包括综合布线、安防系统、一卡通系统、楼宇自控、计算机网络系统等。其中,计算机网络系统及综合布线系统处于基础地位。目前,一般社区信息化项目中计算机网络系统及综合布线系统方面的成本要占总造价的30%左右,且施工难度较大,后期的维护成本较高。此外,传统的计算机网络及综合布线建设不能体现电信运营商在社区信息化方面的优势。为此,电信运营商经过不断实践和总结,提出了利用运营商现有的EPON网络来解决社区信息化中计算机网络的建设及部分综合布线系统的建设问题。在本文中,笔者通过技术分析及社区信息化业务具体案例分析,全面梳理了EPON网络的建设要点,总结了EPON网络建设业务发展相关原则。 展开更多
关键词 社区信息化 ICT 网络系统 楼宇自控 安防系统 物联网 技术分析 网络故障 一卡通系统 计算机通信
原文传递
拓规模 增效益 持续提升ICT 支撑运营能力-江苏移动ICT发展定位与策略
12
《江苏通信》 2017年第3期26-27,共2页
2016年,中国ICT服务业收入达2.4万亿元(互联网企业收入占比超过50%),同比增长10%,高于GDP增速,市场体量巨大;2017年,中国ICT行业仍保持快速增长,预计行业收入规模将超过3万亿元。当前,随着“网络强国”、“中国制造2025”... 2016年,中国ICT服务业收入达2.4万亿元(互联网企业收入占比超过50%),同比增长10%,高于GDP增速,市场体量巨大;2017年,中国ICT行业仍保持快速增长,预计行业收入规模将超过3万亿元。当前,随着“网络强国”、“中国制造2025”、“互联网+”行动计划等国家战略的出台实施,以移动互联网、物联网、云计算、大数据为代表的新一代ICT技术正加速改变人们的生活方式和行为模式。 展开更多
关键词 移动互联网 ICT 运营能力 互联网企业 效益 定位 江苏 支撑
在线阅读 下载PDF
ICT发展合作战略与行动计划
13
作者 张进京 《电力信息化》 2005年第9期90-93,共4页
瑞典是公认的ICT应用领先的国家。近些年来,瑞典在援助发展中国家的ICT基础设施建设,缩小数字鸿沟方面做出了令人瞩目的贡献。中国的信息化建设进展迅速,但由于地域辽阔,各地的ICT应用发展并不均衡。瑞典援助欠发达国家和地区的经验,对... 瑞典是公认的ICT应用领先的国家。近些年来,瑞典在援助发展中国家的ICT基础设施建设,缩小数字鸿沟方面做出了令人瞩目的贡献。中国的信息化建设进展迅速,但由于地域辽阔,各地的ICT应用发展并不均衡。瑞典援助欠发达国家和地区的经验,对缩小中国地域之间的数字鸿沟,可能有一定的借鉴意义。 展开更多
关键词 ICT 计算机系统 作战 通信技术 组成部分
在线阅读 下载PDF
“慢就业”现象下就业能力培养的思考与实践——以兰州城市学院ICT产教融合创新基地为例
14
作者 王国伟 郑岳意 《智库时代》 2023年第29期276-279,共4页
大学毕业生“慢就业”现象日趋明显。“慢就业”既影响社会稳定,又对家庭造成严重的经济、精神负担,也成为困扰高校的问题之一。本文分析“慢就业”的内涵和产生原因,从提升就业能力的角度,思考如何在“慢就业”现象下开展就业课程建设... 大学毕业生“慢就业”现象日趋明显。“慢就业”既影响社会稳定,又对家庭造成严重的经济、精神负担,也成为困扰高校的问题之一。本文分析“慢就业”的内涵和产生原因,从提升就业能力的角度,思考如何在“慢就业”现象下开展就业课程建设与就业能力培养并进行实践活动,以促进大学生更高质量、更加充分的就业。 展开更多
在线阅读 下载PDF
工作坊教学在“准职业人”职业素质培养中的探索与实践--以江苏理工学院ICT产教融合创新基地为例 被引量:1
15
作者 姜建平 薛波 +1 位作者 钱铮 俞洋 《常州信息职业技术学院学报》 2020年第3期78-81,共4页
江苏理工学院ICT产教融合创新基地探索和实践了职业素质教学工作坊,以"四听三练一演"的模式进行教学设计,以小组任务驱动学生学习兴趣,以多元评价指标考核学生学习效果。通过职业素质教学工作坊循序渐进培养"准职业人&qu... 江苏理工学院ICT产教融合创新基地探索和实践了职业素质教学工作坊,以"四听三练一演"的模式进行教学设计,以小组任务驱动学生学习兴趣,以多元评价指标考核学生学习效果。通过职业素质教学工作坊循序渐进培养"准职业人",提升学生的职业素养,达到"上岗即用"的培养目标,为应用型本科院校的大学生职业素质教育探索有效路径。 展开更多
关键词 工作坊教学 “准职业人” 职业素质
在线阅读 下载PDF
Cognitive Control and Brain Network Dynamics during Word Generation Tasks Predicted Using a Novel Event-Related Deep Brain Activity Method
16
作者 Emiko Imai Yoshitada Katagiri 《Journal of Behavioral and Brain Science》 2018年第2期93-115,共23页
There is a growing interest in the diagnosis and treatment of patients with dementia and cognitive impairment at an early stage. Recent imaging studies have explored neural mechanisms underlying cognitive dysfunction ... There is a growing interest in the diagnosis and treatment of patients with dementia and cognitive impairment at an early stage. Recent imaging studies have explored neural mechanisms underlying cognitive dysfunction based on brain network architecture and functioning. The dorsal anterior cingulate cortex (dACC) is thought to regulate large-scale intrinsic brain networks, and plays a primary role in cognitive processing with the anterior insular cortex (aIC), thus providing salience functions. Although neural mechanisms have been elucidated at the connectivity level by imaging studies, their understanding at the activity level still remains unclear because of limited time-based resolution of conventional imaging techniques. In this study, we investigated temporal activity of the dACC during word (verb) generation tasks based on our newly developed event-related deep brain activity (ER-DBA) method using occipital electroencephalogram (EEG) alpha-2 powers with a time resolution of a few hundred milliseconds. The dACC exhibited dip-like temporal waveforms indicating deactivation in an initial stage of each trial when appropriate verbs were successfully generated. By contrast, monotonous increase was observed for incorrect responses and a decrease was detected for no responses. The dip depth was correlated with the percentage of success. Additionally, the dip depth linearly increased with increasing slow component of the DBA index at rest across all subjects. These findings suggest that dACC deactivation is essential for cognitive processing, whereas its activation is required for goal-oriented behavioral outputs, such as cued speech. Such dACC functioning, represented by the dip depth, is supported by the activity of the upper brainstem region including monoaminergic neural systems. 展开更多
关键词 DEEP BRAIN ACTIVITY Alpha-2 Wave Cognitive Processing Dorsal Anterior CINGULATE Cortex EVENT-RELATED DEEP BRAIN ACTIVITY METHOD
暂未订购
Developing a Breast Cancer Resistance Protein Substrate Prediction System Using Deep Features and LDA
17
作者 Mehdi Hassan Safdar Ali +3 位作者 Jin Young Kim Muhammad Sanaullah Hani Alquhayz Khushbakht Safdar 《Computers, Materials & Continua》 SCIE EI 2023年第8期1643-1663,共21页
Breast cancer resistance protein(BCRP)is an important resistance protein that significantly impacts anticancer drug discovery,treatment,and rehabilitation.Early identification of BCRP substrates is quite a challenging... Breast cancer resistance protein(BCRP)is an important resistance protein that significantly impacts anticancer drug discovery,treatment,and rehabilitation.Early identification of BCRP substrates is quite a challenging task.This study aims to predict early substrate structure,which can help to optimize anticancer drug development and clinical diagnosis.For this study,a novel intelligent approach-based methodology is developed by modifying the ResNet101 model using transfer learning(TL)for automatic deep feature(DF)extraction followed by classification with linear discriminant analysis algorithm(TLRNDF-LDA).This study utilized structural fingerprints,which are exploited by DF contrary to conventional molecular descriptors.The proposed in silico model achieved an outstanding accuracy performance of 98.56%on test data compared to other state-of-the-art approaches using standard quality measures.Furthermore,the model’s efficacy is validated via a statistical analysisANOVAtest.It is demonstrated that the developedmodel can be used effectively for early prediction of the substrate structure.The pipeline of this study is flexible and can be extended for in vitro assessment efficacy of anticancer drug response,identification of BCRP functions in transport experiments,and prediction of prostate or lung cancer cell lines. 展开更多
关键词 BCRP drug response deep learning transfer learning LDA In silico
暂未订购
Deep Learning Enabled Predictive Model for P2P Energy Trading in TEM
18
作者 Pudi Sekhar T.J.Benedict Jose +4 位作者 Velmurugan Subbiah Parvathy E.Laxmi Lydia Seifedine Kadry Kuntha Pin Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2022年第4期1473-1487,共15页
With the incorporation of distributed energy systems in the electric grid,transactive energy market(TEM)has become popular in balancing the demand as well as supply adaptively over the grid.The classical grid can be u... With the incorporation of distributed energy systems in the electric grid,transactive energy market(TEM)has become popular in balancing the demand as well as supply adaptively over the grid.The classical grid can be updated to the smart grid by the integration of Information and Communication Technology(ICT)over the grids.The TEM allows the Peerto-Peer(P2P)energy trading in the grid that effectually connects the consumer and prosumer to trade energy among them.At the same time,there is a need to predict the load for effectual P2P energy trading and can be accomplished by the use of machine learning(DML)models.Though some of the short term load prediction techniques have existed in the literature,there is still essential to consider the intrinsic features,parameter optimization,etc.into account.In this aspect,this study devises new deep learning enabled short term load forecasting model for P2P energy trading(DLSTLF-P2P)in TEM.The proposed model involves the design of oppositional coyote optimization algorithm(OCOA)based feature selection technique in which the OCOA is derived by the integration of oppositional based learning(OBL)concept with COA for improved convergence rate.Moreover,deep belief networks(DBN)are employed for the prediction of load in the P2P energy trading systems.In order to additional improve the predictive performance of the DBN model,a hyperparameter optimizer is introduced using chicken swarm optimization(CSO)algorithm is applied for the optimal choice of DBN parameters to improve the predictive outcome.The simulation analysis of the proposed DLSTLF-P2P is validated using the UK Smart Meter dataset and the obtained outcomes demonstrate the superiority of the DLSTLF-P2P technique with the maximum training,testing,and validation accuracy of 90.17%,87.39%,and 87.86%. 展开更多
关键词 Energy trading distributed systems power generation load forecasting deep learning PEER-TO-PEER
在线阅读 下载PDF
“华西黉医”大模型构建与应用 被引量:2
19
作者 石锐 郑兵 +13 位作者 姚巡 杨豪 杨煦晨 张思远 王真吾 刘东峰 董婧 谢佳希 马虎 贺志阳 蒋成 乔丰 罗凤鸣 黄进 《中国胸心血管外科临床杂志》 北大核心 2025年第5期587-593,共7页
目的构建“华西黉医”大模型,探索其在辅助病历生成中的应用效果。方法采用“数据标注-模型训练-场景孵化”全链条的医疗大模型建设范式,通过多模态数据融合、领域自适应训练及国产化硬件适配策略,构建720亿参数规模的医学大模型,即“... 目的构建“华西黉医”大模型,探索其在辅助病历生成中的应用效果。方法采用“数据标注-模型训练-场景孵化”全链条的医疗大模型建设范式,通过多模态数据融合、领域自适应训练及国产化硬件适配策略,构建720亿参数规模的医学大模型,即“华西黉医”大模型。结合语音识别、知识图谱和强化学习技术,在构建“华西黉医”大模型的基础上开发辅助病历生成应用系统。结果以出院小结辅助生成为例,试点科室应用病历生成系统后每份病历书写平均时间由21 min缩短至5 min,效率提高3.2倍,系统输出准确率92.4%。结论医疗机构构建自主可控的医学大模型并以此孵化各类应用系统的模式可行,能为同类机构人工智能建设提供路径参考。 展开更多
关键词 医疗大模型 数据标注 多模态学习 病历生成 人工智能
原文传递
Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy images
20
作者 Jimin Oh Jiwon Yeom +4 位作者 Benediktus Madika Kwang Man Kim Chi Hao Liow Joshua C.Agar Seungbum Hong 《npj Computational Materials》 CSCD 2024年第1期2337-2345,共9页
High-throughput materials research is strongly required to accelerate the development of safe and high energy-density lithium-ion battery(LIB)applicable to electric vehicle and energy storage system.The artificial int... High-throughput materials research is strongly required to accelerate the development of safe and high energy-density lithium-ion battery(LIB)applicable to electric vehicle and energy storage system.The artificial intelligence,including machine learning with neural networks such as Boltzmann neural networks and convolutional neural networks(CNN),is a powerful tool to explore next-generation electrode materials and functional additives. 展开更多
关键词 NEURAL NETWORKS artificial
原文传递
上一页 1 2 35 下一页 到第
使用帮助 返回顶部