The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the explo...The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the exploration of diverse applications arising from this evolving quantum computing paradigm.The scope of the related research is notably diverse.This paper consolidates and presents quantum computing research related to the financial sector.The finance applications considered in this study include portfolio optimization,fraud detection,and Monte Carlo methods for derivative pricing and risk calculation.In addition,we provide a comprehensive analysis of quantum computing’s applications and effects on blockchain technologies,particularly in relation to cryptocurrencies,which are central to financial technology research.As discussed in this study,quantum computing applications in finance are based on fundamental quantum physics principles and key quantum algorithms.This review aims to bridge the research gap between quantum computing and finance.We adopt a two-fold methodology,involving an analysis of quantum algorithms,followed by a discussion of their applications in specific financial contexts.Our study is based on an extensive review of online academic databases,search tools,online journal repositories,and whitepapers from 1952 to 2023,including CiteSeerX,DBLP,Research-Gate,Semantic Scholar,and scientific conference publications.We present state-of-theart findings at the intersection of finance and quantum technology and highlight open research questions that will be valuable for industry practitioners and academicians as they shape future research agendas.展开更多
A quantum chemistry study of the first singlet(S_(1))and triplet(T_(1))excited states of phenylsulfonyl-carbazole compounds,proposed as useful thermally activated delayed fluorescence(TADF)emitters for organic light e...A quantum chemistry study of the first singlet(S_(1))and triplet(T_(1))excited states of phenylsulfonyl-carbazole compounds,proposed as useful thermally activated delayed fluorescence(TADF)emitters for organic light emitting diode(OLED)applications,was performed with the quantum Equation-Of-Motion Variational Quantum Eigensolver(qEOM-VQE)and Variational Quantum Deflation(VQD)algorithms on quantum simulators and devices.These quantum simulations were performed with double zeta quality basis sets on an active space comprising the highest occupied and lowest unoccupied molecular orbitals(HOMO,LUMO)of the TADF molecules.The differences in energy separations between S_(1) and T_(1)(ΔEST)predicted by calculations on quantum simulators were found to be in excellent agreement with experimental data.Differences of 17 and 88 mHa with respect to exact energies were found for excited states by using the qEOM-VQE and VQD algorithms,respectively,to perform simulations on quantum devices without error mitigation.By utilizing state tomography to purify the quantum states and correct energy values,the large errors found for unmitigated results could be improved to differences of,at most,4 mHa with respect to exact values.Consequently,excellent agreement could be found between values ofΔEST predicted by quantum simulations and those found in experiments.展开更多
The ground and excited state calculations at key geometries, such as the Frank–Condon (FC) and the conical intersection (CI)geometries, are essential for understanding photophysical properties. To compute these geome...The ground and excited state calculations at key geometries, such as the Frank–Condon (FC) and the conical intersection (CI)geometries, are essential for understanding photophysical properties. To compute these geometries on noisy intermediate-scalequantum devices, we proposed a strategy that combined a chemistry-inspired spin-restricted ansatz and a new excited statecalculation method called the variational quantum eigensolver under automatically-adjusted constraints (VQE/AC). Unlike theconventional excited state calculation method, called the variational quantum deflation, the VQE/AC does not require the pre-determination of constraint weights and has the potential to describe smooth potential energy surfaces. To validate this strategy,we performed the excited state calculations at the FC and CI geometries of ethylene and phenol blue at the complete active spaceself-consistent field (CASSCF) level of theory, and found that the energy errors were at most 2 kcal mol−1 even on the ibm_kawasakidevice.展开更多
We developed a general framework for hybrid quantum-classical computing of molecular and periodic embedding approaches based on an orbital space separation of the fragment and environment degrees of freedom.Wedemonstr...We developed a general framework for hybrid quantum-classical computing of molecular and periodic embedding approaches based on an orbital space separation of the fragment and environment degrees of freedom.Wedemonstrate itspotentialbypresenting a specific implementationof periodic range-separated DFT coupled to a quantum circuit ansatz,whereby the variational quantum eigensolver and the quantum equation-of-motion algorithm are used to obtain the low-lying spectrum of the embedded fragment Hamiltonian.The application of this scheme to study localized electronic states in materials is showcased through the accurate prediction of the optical properties of the neutral oxygen vacancy in magnesium oxide(MgO).Despite some discrepancies in the position of the main absorption band,the method demonstrates competitive performance compared to state-of-the-art ab initio approaches,particularly evidenced by the excellent agreement with the experimental photoluminescence emission peak.展开更多
基金Gerhard Hellstern is partly funded by the Ministry of Economic Affairs,Labour and Tourism Baden-Württemberg in the frame of the Competence Center Quantum Computing Baden-Württemberg(QORA Ⅱ).
文摘The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the exploration of diverse applications arising from this evolving quantum computing paradigm.The scope of the related research is notably diverse.This paper consolidates and presents quantum computing research related to the financial sector.The finance applications considered in this study include portfolio optimization,fraud detection,and Monte Carlo methods for derivative pricing and risk calculation.In addition,we provide a comprehensive analysis of quantum computing’s applications and effects on blockchain technologies,particularly in relation to cryptocurrencies,which are central to financial technology research.As discussed in this study,quantum computing applications in finance are based on fundamental quantum physics principles and key quantum algorithms.This review aims to bridge the research gap between quantum computing and finance.We adopt a two-fold methodology,involving an analysis of quantum algorithms,followed by a discussion of their applications in specific financial contexts.Our study is based on an extensive review of online academic databases,search tools,online journal repositories,and whitepapers from 1952 to 2023,including CiteSeerX,DBLP,Research-Gate,Semantic Scholar,and scientific conference publications.We present state-of-theart findings at the intersection of finance and quantum technology and highlight open research questions that will be valuable for industry practitioners and academicians as they shape future research agendas.
基金Q.G.,M.S.,H.C.W.,E.W.,Y.O.,H.N.and N.Y.acknowledge support from MEXT Quantum Leap Flagship Program Grant Number JP-MXS0118067285 and JP-MXS0120319794。
文摘A quantum chemistry study of the first singlet(S_(1))and triplet(T_(1))excited states of phenylsulfonyl-carbazole compounds,proposed as useful thermally activated delayed fluorescence(TADF)emitters for organic light emitting diode(OLED)applications,was performed with the quantum Equation-Of-Motion Variational Quantum Eigensolver(qEOM-VQE)and Variational Quantum Deflation(VQD)algorithms on quantum simulators and devices.These quantum simulations were performed with double zeta quality basis sets on an active space comprising the highest occupied and lowest unoccupied molecular orbitals(HOMO,LUMO)of the TADF molecules.The differences in energy separations between S_(1) and T_(1)(ΔEST)predicted by calculations on quantum simulators were found to be in excellent agreement with experimental data.Differences of 17 and 88 mHa with respect to exact energies were found for excited states by using the qEOM-VQE and VQD algorithms,respectively,to perform simulations on quantum devices without error mitigation.By utilizing state tomography to purify the quantum states and correct energy values,the large errors found for unmitigated results could be improved to differences of,at most,4 mHa with respect to exact values.Consequently,excellent agreement could be found between values ofΔEST predicted by quantum simulations and those found in experiments.
基金This work was supported by JSPS KAKENHI Grant no.JP17H06445,20K05438,and JST Gannt no.JPMJPF2221.We also acknowledge the computer resources provided by the Academic Center for Computing and Media Studies(ACCMS)at Kyoto University and by the Research Center of Computer Science(RCCS)at the Institute for Molecular Science.
文摘The ground and excited state calculations at key geometries, such as the Frank–Condon (FC) and the conical intersection (CI)geometries, are essential for understanding photophysical properties. To compute these geometries on noisy intermediate-scalequantum devices, we proposed a strategy that combined a chemistry-inspired spin-restricted ansatz and a new excited statecalculation method called the variational quantum eigensolver under automatically-adjusted constraints (VQE/AC). Unlike theconventional excited state calculation method, called the variational quantum deflation, the VQE/AC does not require the pre-determination of constraint weights and has the potential to describe smooth potential energy surfaces. To validate this strategy,we performed the excited state calculations at the FC and CI geometries of ethylene and phenol blue at the complete active spaceself-consistent field (CASSCF) level of theory, and found that the energy errors were at most 2 kcal mol−1 even on the ibm_kawasakidevice.
基金supported by the NCCR MARVEL,a National Center of Competence in Research,funded by the Swiss National Science Foundation(grant number 205602)supported by the Swiss National Science Foundation in the formof Ambizione grant No.PZ00P2_174227(VVR).
文摘We developed a general framework for hybrid quantum-classical computing of molecular and periodic embedding approaches based on an orbital space separation of the fragment and environment degrees of freedom.Wedemonstrate itspotentialbypresenting a specific implementationof periodic range-separated DFT coupled to a quantum circuit ansatz,whereby the variational quantum eigensolver and the quantum equation-of-motion algorithm are used to obtain the low-lying spectrum of the embedded fragment Hamiltonian.The application of this scheme to study localized electronic states in materials is showcased through the accurate prediction of the optical properties of the neutral oxygen vacancy in magnesium oxide(MgO).Despite some discrepancies in the position of the main absorption band,the method demonstrates competitive performance compared to state-of-the-art ab initio approaches,particularly evidenced by the excellent agreement with the experimental photoluminescence emission peak.