Changes in the coastline are characterized by accretion and erosion. The aim of this study is to contribute to a better understanding of the dynamics of the coastline and the study areas with a view to mitigating and ...Changes in the coastline are characterized by accretion and erosion. The aim of this study is to contribute to a better understanding of the dynamics of the coastline and the study areas with a view to mitigating and preventing the risk of coastal erosion in order to propose a coastal occupation model with planned development policies in the future. These phenomena lead to changes in the position of the coastline. After extraction, the satellite images are compiled, then superimposed and processed using Geographic Information Systems (GIS) for statistical calculation of coastline change rates. A morphosedimentary study is carried out using topography and sedimentology. The topographic method is used to calculate sediment volumes using monthly profiles. The sedimentological method is used to determine the granulometric variations in the morphological units by calculating sedimentological indices. With erosion rates of −2.13 m/yr and −2.17 m/yr respectively at Djiffère (Palmarin and Sangomar breccia) and Joal (Joal Fadhiouth and Ngazobil), the EPR index revealed a sediment deficit. Palmarin Ngallou and the island of Fadhiouth are undergoing accretion at rates of +1.43 m/yr and +1.14 m/yr respectively. From a topographical point of view, the respective accumulations of −13.74 m3/m of beach and −8.65 m3/m of beach at Djiffère and Joal respectively point to significant erosion on all the aerial beach units, while for the underwater beaches, accretion was noted with accumulations of +4.00 m3/m of beach and +5.94 m3/m at Djiffère and Joal respectively. As for the sedimentological results, the Mz index shows a decrease in grain size from the high beach to the surf zone. Some points show bimodal deposits, showing the impact of the dune on beach activity, confirmed by the dispersion on the Mz-sigma diagram. The three methods used in this work show that the Djiffère sector in Joal is dominated by erosion, even though accretion points can be noted.展开更多
This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected fr...This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.展开更多
Today, agricultural production is threatened by crop pathogens, including plant-parasitic nematodes. Because of their harmful effects on the environment and human health, synthetic nematicides are gradually being bann...Today, agricultural production is threatened by crop pathogens, including plant-parasitic nematodes. Because of their harmful effects on the environment and human health, synthetic nematicides are gradually being banned in several countries. This study evaluates the nematicidal activity of Datura metel oil. Datura metel seed oil was obtained using the Soxhlet extractor in hexane. The resulting oil was characterized by determining physicochemical parameters and molecular composition using GC-MS. The nematicidal activity of the oil was assessed by determining the number of dead nematodes. Physicochemical characterization gave an acidity index of 0.3% and a peroxide index of 10 meq.O2/Kg, while GC-MS analysis identified 30 molecules made up mainly of fatty acid esters, four of which represented over 74% of the oil’s total weight. The nematicidal activity of the oil, expressed in terms of mortality rate as a function of concentration, showed mortality rates of 58;69 and 79% over 48 hours of incubation at concentrations of 25, 50 and 100 µg/mL respectively. The activity observed could be linked to the high presence of the four compounds most commonly identified in the oil. These results suggest that Datura metel oil could be a promising alternative to synthetic pesticides for the control of crop pests.展开更多
Elbow dislocations are rare injuries in children due to the resistance of the capsuloligamentous structures. Anterior dislocation is very rare and its combination with an olecranon fracture is unusual. The authors rep...Elbow dislocations are rare injuries in children due to the resistance of the capsuloligamentous structures. Anterior dislocation is very rare and its combination with an olecranon fracture is unusual. The authors report a case of this lesion in a 7-year-old child managed nonoperatively.展开更多
The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar ener...The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.展开更多
Introduction: the left atrial appendage, a dormant embryonic vestige, would play a major role in cardiac hemodynamic changes, volume homeostasis and thrombi formation. It, therefore constitutes a therapeutic target. I...Introduction: the left atrial appendage, a dormant embryonic vestige, would play a major role in cardiac hemodynamic changes, volume homeostasis and thrombi formation. It, therefore constitutes a therapeutic target. Its morphology is extremely variable. Objective: it consisted on determining the morphological variations of the left auricle as well as their interest in the prevention of thrombi in the Senegalese. Material and Method: This study was conducted by dissecting 36 fresh hearts from Senegalese anatomical subjects with a sampling of the left atrial appendage, including specimens with normal morphological appearance. Their morphology was studied using the fresh and frozen plaster molding method. The data obtained were analyzed statistically. Results: the average age of the subjects was 33 years, with a sex ratio of 1.06, the cauliflower shape was dominant with 57% of cases and the cactus shape (4%) was less frequent. The cauliflower shape presented a clear angulation compared to the others without statistically significant differences according to age. Conclusion: This work showed a great morphological variability of the left atrial appendage. It can provide an update on the specificity of Senegalese. Taking these variations into account is important in the safe management of hemodynamic conditions and the improvement of the management of recurrent strokes.展开更多
Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced ima...Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.展开更多
Global mortality rates are greatly impacted by malignancies of the brain and nervous system.Although,Magnetic Resonance Imaging(MRI)plays a pivotal role in detecting brain tumors;however,manual assessment is time-cons...Global mortality rates are greatly impacted by malignancies of the brain and nervous system.Although,Magnetic Resonance Imaging(MRI)plays a pivotal role in detecting brain tumors;however,manual assessment is time-consuming and susceptible to human error.To address this,we introduce ICA2-SVM,an advanced computational framework integrating Independent Component Analysis Architecture-2(ICA2)and Support Vector Machine(SVM)for automated tumor segmentation and classification.ICA2 is utilized for image preprocessing and optimization,enhancing MRI consistency and contrast.The Fast-MarchingMethod(FMM)is employed to delineate tumor regions,followed by SVM for precise classification.Validation on the Contrast-Enhanced Magnetic Resonance Imaging(CEMRI)dataset demonstrates the superior performance of ICA2-SVM,achieving a Dice Similarity Coefficient(DSC)of 0.974,accuracy of 0.992,specificity of 0.99,and sensitivity of 0.99.Additionally,themodel surpasses existing approaches in computational efficiency,completing analysis within 0.41 s.By integrating state-of-the-art computational techniques,ICA2-SVM advances biomedical imaging,offering a highly accurate and efficient solution for brain tumor detection.Future research aims to incorporate multi-physics modeling and diverse classifiers to further enhance the adaptability and applicability of brain tumor diagnostic systems.展开更多
文摘Changes in the coastline are characterized by accretion and erosion. The aim of this study is to contribute to a better understanding of the dynamics of the coastline and the study areas with a view to mitigating and preventing the risk of coastal erosion in order to propose a coastal occupation model with planned development policies in the future. These phenomena lead to changes in the position of the coastline. After extraction, the satellite images are compiled, then superimposed and processed using Geographic Information Systems (GIS) for statistical calculation of coastline change rates. A morphosedimentary study is carried out using topography and sedimentology. The topographic method is used to calculate sediment volumes using monthly profiles. The sedimentological method is used to determine the granulometric variations in the morphological units by calculating sedimentological indices. With erosion rates of −2.13 m/yr and −2.17 m/yr respectively at Djiffère (Palmarin and Sangomar breccia) and Joal (Joal Fadhiouth and Ngazobil), the EPR index revealed a sediment deficit. Palmarin Ngallou and the island of Fadhiouth are undergoing accretion at rates of +1.43 m/yr and +1.14 m/yr respectively. From a topographical point of view, the respective accumulations of −13.74 m3/m of beach and −8.65 m3/m of beach at Djiffère and Joal respectively point to significant erosion on all the aerial beach units, while for the underwater beaches, accretion was noted with accumulations of +4.00 m3/m of beach and +5.94 m3/m at Djiffère and Joal respectively. As for the sedimentological results, the Mz index shows a decrease in grain size from the high beach to the surf zone. Some points show bimodal deposits, showing the impact of the dune on beach activity, confirmed by the dispersion on the Mz-sigma diagram. The three methods used in this work show that the Djiffère sector in Joal is dominated by erosion, even though accretion points can be noted.
文摘This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.
文摘Today, agricultural production is threatened by crop pathogens, including plant-parasitic nematodes. Because of their harmful effects on the environment and human health, synthetic nematicides are gradually being banned in several countries. This study evaluates the nematicidal activity of Datura metel oil. Datura metel seed oil was obtained using the Soxhlet extractor in hexane. The resulting oil was characterized by determining physicochemical parameters and molecular composition using GC-MS. The nematicidal activity of the oil was assessed by determining the number of dead nematodes. Physicochemical characterization gave an acidity index of 0.3% and a peroxide index of 10 meq.O2/Kg, while GC-MS analysis identified 30 molecules made up mainly of fatty acid esters, four of which represented over 74% of the oil’s total weight. The nematicidal activity of the oil, expressed in terms of mortality rate as a function of concentration, showed mortality rates of 58;69 and 79% over 48 hours of incubation at concentrations of 25, 50 and 100 µg/mL respectively. The activity observed could be linked to the high presence of the four compounds most commonly identified in the oil. These results suggest that Datura metel oil could be a promising alternative to synthetic pesticides for the control of crop pests.
文摘Elbow dislocations are rare injuries in children due to the resistance of the capsuloligamentous structures. Anterior dislocation is very rare and its combination with an olecranon fracture is unusual. The authors report a case of this lesion in a 7-year-old child managed nonoperatively.
文摘The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.
文摘Introduction: the left atrial appendage, a dormant embryonic vestige, would play a major role in cardiac hemodynamic changes, volume homeostasis and thrombi formation. It, therefore constitutes a therapeutic target. Its morphology is extremely variable. Objective: it consisted on determining the morphological variations of the left auricle as well as their interest in the prevention of thrombi in the Senegalese. Material and Method: This study was conducted by dissecting 36 fresh hearts from Senegalese anatomical subjects with a sampling of the left atrial appendage, including specimens with normal morphological appearance. Their morphology was studied using the fresh and frozen plaster molding method. The data obtained were analyzed statistically. Results: the average age of the subjects was 33 years, with a sex ratio of 1.06, the cauliflower shape was dominant with 57% of cases and the cactus shape (4%) was less frequent. The cauliflower shape presented a clear angulation compared to the others without statistically significant differences according to age. Conclusion: This work showed a great morphological variability of the left atrial appendage. It can provide an update on the specificity of Senegalese. Taking these variations into account is important in the safe management of hemodynamic conditions and the improvement of the management of recurrent strokes.
基金funded by Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/MRC/13/771-4.
文摘Breast cancer remains one of the most pressing global health concerns,and early detection plays a crucial role in improving survival rates.Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities.However,existing methodologies face persistent challenges,including low image contrast,noise interference,and inaccuracies in segmenting regions of interest.To address these limitations,this study introduces a novel computational framework for analyzing mammographic images,evaluated using the Mammographic Image Analysis Society(MIAS)dataset comprising 322 samples.The proposed methodology follows a structured three-stage approach.Initially,mammographic scans are classified using the Breast Imaging Reporting and Data System(BI-RADS),ensuring systematic and standardized image analysis.Next,the pectoral muscle,which can interfere with accurate segmentation,is effectively removed to refine the region of interest(ROI).The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis(ICA)to enhance contrast,suppress noise,and improve image clarity.Following these enhancements,a robust segmentation technique is employed to delineated abnormal regions.Experimental results validate the efficiency of the proposed framework,demonstrating a significant improvement in the Effective Measure of Enhancement(EME)and a 3 dB increase in Peak Signal-to-Noise Ratio(PSNR),indicating superior image quality.The model also achieves an accuracy of approximately 97%,surpassing contemporary techniques evaluated on the MIAS dataset.Furthermore,its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications.This study presents an advanced and dependable computational framework for mammographic image analysis,effectively addressing critical challenges in noise reduction,contrast enhancement,and segmentation precision.The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic(CAD)systems,with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes.
基金supported by the Deanship of Graduate Studies and Scientific Research at Najran University through funding code NU/GP/MRC/13/771-1.
文摘Global mortality rates are greatly impacted by malignancies of the brain and nervous system.Although,Magnetic Resonance Imaging(MRI)plays a pivotal role in detecting brain tumors;however,manual assessment is time-consuming and susceptible to human error.To address this,we introduce ICA2-SVM,an advanced computational framework integrating Independent Component Analysis Architecture-2(ICA2)and Support Vector Machine(SVM)for automated tumor segmentation and classification.ICA2 is utilized for image preprocessing and optimization,enhancing MRI consistency and contrast.The Fast-MarchingMethod(FMM)is employed to delineate tumor regions,followed by SVM for precise classification.Validation on the Contrast-Enhanced Magnetic Resonance Imaging(CEMRI)dataset demonstrates the superior performance of ICA2-SVM,achieving a Dice Similarity Coefficient(DSC)of 0.974,accuracy of 0.992,specificity of 0.99,and sensitivity of 0.99.Additionally,themodel surpasses existing approaches in computational efficiency,completing analysis within 0.41 s.By integrating state-of-the-art computational techniques,ICA2-SVM advances biomedical imaging,offering a highly accurate and efficient solution for brain tumor detection.Future research aims to incorporate multi-physics modeling and diverse classifiers to further enhance the adaptability and applicability of brain tumor diagnostic systems.