In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficienc...In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficiency,extensive research has been conducted in the academic community on numerous potential materials.Among these materials,metal fluorides have attracted significant attention due to their ionic metal-fluorine bonds and tunable electronic structures,attributed to the highest electronegativity of fluorine in their chemical composition.This makes them promising candidates for future electrochemical applications in various fields.However,metal fluorides encounter various challenges in different application directions.Therefore,we comprehensively review the applications of metal fluorides in the field of energy storage and conversion,aiming to deepen our understanding of their exhibited characteristics in different electrochemical processes.In this paper,we summarize the difficulties and improvement methods encountered in different types of battery applications and several typical electrode optimization strategies in the field of supercapacitors.In the field of water electrolysis,we focus on surface reconstruction and the critical role of fluorine,demonstrating the catalytic performance of metal fluorides from the perspectives of reconstruction mechanism and process analysis.Finally,we provide a summary and outlook for this field,aiming to offer guidance for future breakthroughs in the energy storage and conversion applications of metal fluorides.展开更多
Integrating high-nickel layered oxide cathodes with aqueous slurry electrode preparation routes holds the potential to simultaneously meet the demands for high energy density and low-cost production of lithium-ion bat...Integrating high-nickel layered oxide cathodes with aqueous slurry electrode preparation routes holds the potential to simultaneously meet the demands for high energy density and low-cost production of lithium-ion batteries.However,the influence of dual exposure to air and liquid water as well as the heating treatment during aqueous slurry electrode processing on the high-nickel layered oxide electrode is yet to be understood.In this study,we systematically investigate the structural evolution and electro-chemical behaviors when LiNi_(0.83)Mn_(0.05)Co_(0.12)O_(2)(NMC83)is subjected to aqueous slurry processing.It was observed that the crystal structure near the surface of NMC83 is partially reconstructed to contain a mixture of rock-salt and layered phases when exposed to water,leading to the deteriorated rate capability of the NMC83 electrodes.This partial surface reconstruction layer completely converts into a pure rock-salt phase upon cycling,accompanied by the release of O_(2),Ni leaching,catalyzed decomposition of the electrolyte,and the formation of a thick cathode electrolyte interphase layer.The byproducts of the electrolyte and dissolved Ni could shuttle to the Li metal side,causing a crosstalk effect that results in a thick and unstable solid electrolyte interphase layer on the Li surface.These in combination severely undermined the cycling stability of the NMC83 electrodes obtained from the aqueous slurry.A mitigation strategy using molecular self-assembly technique was demonstrated to enhance the surface stability of water-treated NMC83.Our findings offer new insights for tailoring ambient environment stability and aqueous slurry processability for ultra-high nickel layered oxide and other water-sensitive cathode materials.展开更多
Self-assembled monolayers(SAMs),owing to their amphiphilic nature,tend to aggregate,which impedes the formation of a dense and uniform SAM on the substrate.Additionally,the weak adsorption ability of SAMs on the indiu...Self-assembled monolayers(SAMs),owing to their amphiphilic nature,tend to aggregate,which impedes the formation of a dense and uniform SAM on the substrate.Additionally,the weak adsorption ability of SAMs on the indium tin oxide(ITO)surface and the desorption of hydroxyl(OH)from the ITO surface induced by polar solvents can lead to the formation of vacancies.Herein,a dimethylacridine-based SAM is incorporated into the perovskite precursor solution.This SAM can be extruded from the precursor solution and enriched on the bottom surface of the perovskite,filling the vacancies and in situ forming a mixed SAM with MeO-2PACz as a hole-selective layer(HSL).The in situ formed mixed SAM optimizes the energy level alignment between the HSL and the perovskite,facilitating hole extraction and alleviating the residual strain of the perovskite film.Consequently,the perovskite solar cells(PSCs),based on the mixed SAM,achieve a power conversion efficiency(PCE)of 25.69%and exhibit excellent operational stability.When this approach is applied to 1.78 eV bandgap PSC devices,it yields a PCE of 20.08%.This work presents a unique strategy for fabricating both high-quality perovskite films and superior buried interfaces,which is also applicable to wide-bandgap PSCs.展开更多
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ...Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.展开更多
Two-dimensional(2D)heterostructures compris-ing of differently stacking atomic layers are attrac-tive owing to its flexible composition as well as the emerging new physicochemical properties.Howev-er,so far many 2D ve...Two-dimensional(2D)heterostructures compris-ing of differently stacking atomic layers are attrac-tive owing to its flexible composition as well as the emerging new physicochemical properties.Howev-er,so far many 2D vertical heterojunctions are constructed through transfer methods,inevitably introducing interfacial impurities and thus hindering detailed atomic-level studies.In this work,we have developed a clean two-step fabrication strat-egy by combining ultrahigh vacuum(UHV)molecular beam epitaxy(MBE)growth with am-bient chemical vapor deposition(CVD).We first-ly grew single crystalline graphene film on a SiC substrate under UHV condition,and then synthesized MoS_(2)films on the graphene-SiC sur-face through CVD under inert atmosphere,thus successfully realized the construction of a well-defined MoS_(2)-graphene/SiC heterojunction with clean surface.Particularly,we observed the MoS_(2)can not only grow into monolayer flakes but also form spiral structures,the latter showing layer-by-layer stacks with reduced bandgap down to~1.0 eV.展开更多
Photocatalytic seawater splitting is an attractive way for producing green hydrogen.Significant progresses have been made recently in catalytic efficiencies,but the activity of catalysts can only maintain stable for a...Photocatalytic seawater splitting is an attractive way for producing green hydrogen.Significant progresses have been made recently in catalytic efficiencies,but the activity of catalysts can only maintain stable for about 10 h.Here,we develop a vacancy-engineered Ag_(3)PO_(4)/CdS porous microreactor chip photocatalyst,operating in seawater with a performance stability exceeding 300 h.This is achieved by the establishment of both catalytic selectivity for impurity ions and tailored interactions between vacancies and sulfur species.Efficient transport of carriers with strong redox ability is ensured by forming a heterojunction within a space charge region,where the visualization of potential distribution confirms the key design concept of our chip.Moreover,the separation of oxidation and reduction reactions in space inhibits the reverse recombination,making the chip capable of working at atmospheric pressure.Consequently,in the presence of Pt co-catalysts,a high solar-to-hydrogen efficiency of 0.81%can be achieved in the whole durability test.When using a fully solar-driven 256 cm2 hydrogen production prototype,a H_(2) evolution rate of 68.01 mmol h−1 m−2 can be achieved under outdoor insolation.Our findings provide a novel approach to achieve high selectivity,and demonstrate an efficient and scalable prototype suitable for practical solar H_(2) production.展开更多
金属锂负极由于比容量高(3860 mAh·g^(-1))及氧化还原电位极低(-3.04 V vs.标准氢气电极(SHE)),被认为是实现高能量密度锂电池的理想负极。然而,金属锂电极与电解液反应剧烈,且锂离子在电极表面沉积不均匀容易产生枝晶,导致其循环...金属锂负极由于比容量高(3860 mAh·g^(-1))及氧化还原电位极低(-3.04 V vs.标准氢气电极(SHE)),被认为是实现高能量密度锂电池的理想负极。然而,金属锂电极与电解液反应剧烈,且锂离子在电极表面沉积不均匀容易产生枝晶,导致其循环稳定性和安全性都较差,限制了其应用推广。我们前期通过构建金属锂-碳纳米管(Li-CNT)复合结构,极大的提高了金属锂的比表面积,降低了电极电流密度,从而有效地抑制了锂枝晶的生长,提高了金属锂电极的循环稳定性和安全性能。本工作在前期工作基础上,采用简单的液相反应,利用4-氟苯乙烯(FPS)对Li-CNT进行表面修饰并进行原位聚合,得到了表面富含氟化锂(Li F)保护层的Li-CNT(FPS-Li-CNT)。该表面修饰层能够有效抑制电解液和空气对Li-CNT的侵蚀,显著的提高了LiCNT电极的界面稳定性。FPS-Li-CNT与磷酸铁锂正极(LFP)组成的LFP||FPS-Li-CNT全电池,在正负极容量配比为1:6条件下,能够稳定循环280圈,库伦效率达到97.7%。展开更多
BiFeO_(3)(BFO)是一种新型可回收光响应催化剂,但较高的光生电子/空穴对复合率和较低的量子产率限制了其实际应用。本研究通过水热法制备出还原氧化石墨烯-BFO(RGO-BFO)纳米晶复合材料,表征与测试结果表明,相比于BFO颗粒,复合材料的禁...BiFeO_(3)(BFO)是一种新型可回收光响应催化剂,但较高的光生电子/空穴对复合率和较低的量子产率限制了其实际应用。本研究通过水热法制备出还原氧化石墨烯-BFO(RGO-BFO)纳米晶复合材料,表征与测试结果表明,相比于BFO颗粒,复合材料的禁带宽度E_(g)为2.0 e V,降低约10%;40 min对亚甲基蓝吸附–催化效率接近100%,远高于BFO颗粒(28%),这主要由于复合体系中光生电子/空穴对复合率更低。通过本征磁性回收并重复利用6次后,复合材料仍保持89.1%催化效率,表现出优异催化性能。展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51073067Scientific and Technological Development Program of Jilin Province,Grant/Award Number:20220201138GX.
文摘In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficiency,extensive research has been conducted in the academic community on numerous potential materials.Among these materials,metal fluorides have attracted significant attention due to their ionic metal-fluorine bonds and tunable electronic structures,attributed to the highest electronegativity of fluorine in their chemical composition.This makes them promising candidates for future electrochemical applications in various fields.However,metal fluorides encounter various challenges in different application directions.Therefore,we comprehensively review the applications of metal fluorides in the field of energy storage and conversion,aiming to deepen our understanding of their exhibited characteristics in different electrochemical processes.In this paper,we summarize the difficulties and improvement methods encountered in different types of battery applications and several typical electrode optimization strategies in the field of supercapacitors.In the field of water electrolysis,we focus on surface reconstruction and the critical role of fluorine,demonstrating the catalytic performance of metal fluorides from the perspectives of reconstruction mechanism and process analysis.Finally,we provide a summary and outlook for this field,aiming to offer guidance for future breakthroughs in the energy storage and conversion applications of metal fluorides.
基金financially supported by the National Key R&D Program of China(2021YFB3800300)the National Natural Science Foundation of China(22179143 and 22309202)+1 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talentthe Gusu Leading Talents Program(ZXL2023190)。
文摘Integrating high-nickel layered oxide cathodes with aqueous slurry electrode preparation routes holds the potential to simultaneously meet the demands for high energy density and low-cost production of lithium-ion batteries.However,the influence of dual exposure to air and liquid water as well as the heating treatment during aqueous slurry electrode processing on the high-nickel layered oxide electrode is yet to be understood.In this study,we systematically investigate the structural evolution and electro-chemical behaviors when LiNi_(0.83)Mn_(0.05)Co_(0.12)O_(2)(NMC83)is subjected to aqueous slurry processing.It was observed that the crystal structure near the surface of NMC83 is partially reconstructed to contain a mixture of rock-salt and layered phases when exposed to water,leading to the deteriorated rate capability of the NMC83 electrodes.This partial surface reconstruction layer completely converts into a pure rock-salt phase upon cycling,accompanied by the release of O_(2),Ni leaching,catalyzed decomposition of the electrolyte,and the formation of a thick cathode electrolyte interphase layer.The byproducts of the electrolyte and dissolved Ni could shuttle to the Li metal side,causing a crosstalk effect that results in a thick and unstable solid electrolyte interphase layer on the Li surface.These in combination severely undermined the cycling stability of the NMC83 electrodes obtained from the aqueous slurry.A mitigation strategy using molecular self-assembly technique was demonstrated to enhance the surface stability of water-treated NMC83.Our findings offer new insights for tailoring ambient environment stability and aqueous slurry processability for ultra-high nickel layered oxide and other water-sensitive cathode materials.
基金supported by the Young Cross Team Project of CAS(No.JCTD-2021-14)the National Natural Science Foundation of China(51925206)Gusu Innovation and Entrepreneur Leading Talents(ZXL2022466)。
文摘Self-assembled monolayers(SAMs),owing to their amphiphilic nature,tend to aggregate,which impedes the formation of a dense and uniform SAM on the substrate.Additionally,the weak adsorption ability of SAMs on the indium tin oxide(ITO)surface and the desorption of hydroxyl(OH)from the ITO surface induced by polar solvents can lead to the formation of vacancies.Herein,a dimethylacridine-based SAM is incorporated into the perovskite precursor solution.This SAM can be extruded from the precursor solution and enriched on the bottom surface of the perovskite,filling the vacancies and in situ forming a mixed SAM with MeO-2PACz as a hole-selective layer(HSL).The in situ formed mixed SAM optimizes the energy level alignment between the HSL and the perovskite,facilitating hole extraction and alleviating the residual strain of the perovskite film.Consequently,the perovskite solar cells(PSCs),based on the mixed SAM,achieve a power conversion efficiency(PCE)of 25.69%and exhibit excellent operational stability.When this approach is applied to 1.78 eV bandgap PSC devices,it yields a PCE of 20.08%.This work presents a unique strategy for fabricating both high-quality perovskite films and superior buried interfaces,which is also applicable to wide-bandgap PSCs.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFE0207300)National Natural Science Foundation of China(Grant Nos.22179142 and 22075314)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB051 and 2023ZB836)the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.
基金support from the Natural Science Foundation of Jiangsu Province(No.BK20210124)the National Natural Science Foun-dation of China(No.12204512,No.22172152,No.21872130,No.22372193)+3 种基金the National Key Re-search and Development Program of China(No.2021YFA1502801)the joint funds from the Hefei National Synchrotron Radiation Laboratory(No.KY2060000202)We also acknowledge financial support from the CAS Project for Young Scientists in Basic Research(No.YSBR-049)the Fundamental Re-search Funds for the Central Universities(No.WK3510000013,WK2060000066).
文摘Two-dimensional(2D)heterostructures compris-ing of differently stacking atomic layers are attrac-tive owing to its flexible composition as well as the emerging new physicochemical properties.Howev-er,so far many 2D vertical heterojunctions are constructed through transfer methods,inevitably introducing interfacial impurities and thus hindering detailed atomic-level studies.In this work,we have developed a clean two-step fabrication strat-egy by combining ultrahigh vacuum(UHV)molecular beam epitaxy(MBE)growth with am-bient chemical vapor deposition(CVD).We first-ly grew single crystalline graphene film on a SiC substrate under UHV condition,and then synthesized MoS_(2)films on the graphene-SiC sur-face through CVD under inert atmosphere,thus successfully realized the construction of a well-defined MoS_(2)-graphene/SiC heterojunction with clean surface.Particularly,we observed the MoS_(2)can not only grow into monolayer flakes but also form spiral structures,the latter showing layer-by-layer stacks with reduced bandgap down to~1.0 eV.
基金support from the Industry-University Cooperation Project of Fujian Province(2023H6003)F.L.gratefully acknowledges financial support from the Fuzhou Fuzhi Photocatalysis Research Center+1 种基金Q.C.gratefully acknowledges financial support from the National Natural Science Foundation of China(22022205,22372193)the CAS Project for Young Scientists in Basic Research(YSBR-054).
文摘Photocatalytic seawater splitting is an attractive way for producing green hydrogen.Significant progresses have been made recently in catalytic efficiencies,but the activity of catalysts can only maintain stable for about 10 h.Here,we develop a vacancy-engineered Ag_(3)PO_(4)/CdS porous microreactor chip photocatalyst,operating in seawater with a performance stability exceeding 300 h.This is achieved by the establishment of both catalytic selectivity for impurity ions and tailored interactions between vacancies and sulfur species.Efficient transport of carriers with strong redox ability is ensured by forming a heterojunction within a space charge region,where the visualization of potential distribution confirms the key design concept of our chip.Moreover,the separation of oxidation and reduction reactions in space inhibits the reverse recombination,making the chip capable of working at atmospheric pressure.Consequently,in the presence of Pt co-catalysts,a high solar-to-hydrogen efficiency of 0.81%can be achieved in the whole durability test.When using a fully solar-driven 256 cm2 hydrogen production prototype,a H_(2) evolution rate of 68.01 mmol h−1 m−2 can be achieved under outdoor insolation.Our findings provide a novel approach to achieve high selectivity,and demonstrate an efficient and scalable prototype suitable for practical solar H_(2) production.
文摘金属锂负极由于比容量高(3860 mAh·g^(-1))及氧化还原电位极低(-3.04 V vs.标准氢气电极(SHE)),被认为是实现高能量密度锂电池的理想负极。然而,金属锂电极与电解液反应剧烈,且锂离子在电极表面沉积不均匀容易产生枝晶,导致其循环稳定性和安全性都较差,限制了其应用推广。我们前期通过构建金属锂-碳纳米管(Li-CNT)复合结构,极大的提高了金属锂的比表面积,降低了电极电流密度,从而有效地抑制了锂枝晶的生长,提高了金属锂电极的循环稳定性和安全性能。本工作在前期工作基础上,采用简单的液相反应,利用4-氟苯乙烯(FPS)对Li-CNT进行表面修饰并进行原位聚合,得到了表面富含氟化锂(Li F)保护层的Li-CNT(FPS-Li-CNT)。该表面修饰层能够有效抑制电解液和空气对Li-CNT的侵蚀,显著的提高了LiCNT电极的界面稳定性。FPS-Li-CNT与磷酸铁锂正极(LFP)组成的LFP||FPS-Li-CNT全电池,在正负极容量配比为1:6条件下,能够稳定循环280圈,库伦效率达到97.7%。
文摘BiFeO_(3)(BFO)是一种新型可回收光响应催化剂,但较高的光生电子/空穴对复合率和较低的量子产率限制了其实际应用。本研究通过水热法制备出还原氧化石墨烯-BFO(RGO-BFO)纳米晶复合材料,表征与测试结果表明,相比于BFO颗粒,复合材料的禁带宽度E_(g)为2.0 e V,降低约10%;40 min对亚甲基蓝吸附–催化效率接近100%,远高于BFO颗粒(28%),这主要由于复合体系中光生电子/空穴对复合率更低。通过本征磁性回收并重复利用6次后,复合材料仍保持89.1%催化效率,表现出优异催化性能。