The seismic stability of the rock slope at tunnel entrances is very intricate because of the interactions among geological structures and earthquakes.However,the local damage mechanism and the correlation mechanism of...The seismic stability of the rock slope at tunnel entrances is very intricate because of the interactions among geological structures and earthquakes.However,the local damage mechanism and the correlation mechanism of accumulated damage and landslide triggering are not clear.To investigate the correlation between the inherent frequency and seismic characteristics of a layered slope at a tunnel entrance from the perspective of the frequency domain,a three-dimensional finite element modal analysis and Fourier spectrum analysis of shaking table tests were carried out.This work takes the quarry slope at the tunnel entrance in Xiamen City as a case example.The study region is predominantly affected by strong seismic activity,where the rock is primarily composed of granite with varying degrees of weathering.The results show that the seismic energy below the tunnel is mostly focused on the lowfrequency ranges,whereas the energy above the tunnel is gradually transferred to the high-frequency range.By analyzing the peak spectrum value of high-order inherent frequencies for the slope,its seismic damage evolution can be effectively identified,including fracture initiation,accelerated deformation,and sliding instability stages.The seismic response of the slope includes multi-mode interactions,which mainly include bending,torsion,and combined deformation.There are magnification effects of elevation,slope surface,and structural plane in the slope.Moreover,the triggering mechanism of the local deformation and integral sliding for the landslide is identified,which indicates that the lining structure of the tunnel entrance is more prone to seismic damage.This work successfully investigated the seismic damage evolution and failure mechanism of the slope at tunnel entrances in the frequency domain.展开更多
The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed ac...The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time.展开更多
Steep bedding slopes are widely distributed in Southwestern China’s mountainous regions and have complex seismic responses and instability risks,causing casualties and property losses.Considering the high-seismic-int...Steep bedding slopes are widely distributed in Southwestern China’s mountainous regions and have complex seismic responses and instability risks,causing casualties and property losses.Considering the high-seismic-intensity environment,the dynamic failure evolution and instability mechanism of high-steep bedding slopes are simulated via the discrete element method and shaking table test.The dynamic response characteristics and cumulative failure effects of slopes subjected to continuous ground motion are investigated.The results show that the dynamic response characteristics of slopes under continuous earthquakes are influenced by geological and topographic conditions.Elevation has a distinct impact on both the slope interior and surface,with amplification effects more pronounced on the surface.The weak interlayers have different influences on the dynamic amplification effect of slopes.Weak interlayers have dynamic magnification effects on the slope surface at relative elevations of 0-0.33 and 0.82-1.0 but have weakening effects between 0.33 and 0.82.Moreover,the weak interlayers also have controlling effects on the dynamic instability mode of slopes.The characteristics of intergranular contact failure,fracture propagation,and displacement distribution are analyzed to reveal the dynamic failure evolution and instability mechanism through the discrete-element model.The dynamic instability process of slopes includes three stages:fracture initiation(0-0.2g),fracture expansion(0.2g-0.3g),and sliding instability(0.3g-0.6g).This work can provide a valuable reference for the seismic stability and reinforcement of complex slopes.展开更多
Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity AB...Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity ABE productions,but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system.Over the past decades,efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments.In this review,a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications.The recent trends in distillation sequence construction that fitting with the rapid developed upstream in situ product recovery(ISPR)systems are emphasized.Furthermore,towards developing a more efficient ABE distillation system,the review takes a broad overview of the intensification strategies for ABE distillation.Along with systematic introduction of the key examples,the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.展开更多
Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail...Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.展开更多
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting ...Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.展开更多
As the key part of Prognostics and Health Management(PHM), Remaining Useful Life(RUL) estimation has been extensively investigated in recent years. Current RUL estimation studies considering the intervention of im...As the key part of Prognostics and Health Management(PHM), Remaining Useful Life(RUL) estimation has been extensively investigated in recent years. Current RUL estimation studies considering the intervention of imperfect maintenance activities usually assumed that maintenance activities have a single influence on the degradation level or degradation rate, but not on both.Aimed at this problem, this paper proposes a new degradation modeling and RUL estimation method taking the influence of imperfect maintenance activities on both the degradation level and the degradation rate into account. Toward this end, a stochastic degradation model considering imperfect maintenance activities is firstly constructed based on the diffusion process. Then, the Probability Density Function(PDF) of the RUL is derived by the convolution operator under the concept of First Hitting Time(FHT). To implement the proposed RUL estimation method,the Maximum Likelihood Estimation(MLE) is utilized to estimate the degradation related parameters based on the Condition Monitoring(CM) data, while the Bayesian method is utilized to estimate the maintenance related parameters based on the maintenance data. Finally, a numerical example and a practical case study are provided to demonstrate the superiority of the proposed method. The experimental results show that the proposed method could greatly improve the RUL estimation accuracy for the degrading equipment subjected to imperfect maintenance activities.展开更多
The composition of the modern aerospace system becomes more and more complex.The performance degradation of any device in the system may cause it difficult for the whole system to keep normal working states.Therefore,...The composition of the modern aerospace system becomes more and more complex.The performance degradation of any device in the system may cause it difficult for the whole system to keep normal working states.Therefore,it is essential to evaluate the performance of complex aerospace systems.In this paper,the performance evaluation of complex aerospace systems is regarded as a Multi-Attribute Decision Analysis(MADA)problem.Based on the structure and working principle of the system,a new Evidential Reasoning(ER)based approach with uncertain parameters is proposed to construct a nonlinear optimization model to evaluate the system performance.In the model,the interval form is used to express the uncertainty,such as error in testing data and inaccuracy in expert knowledge.In order to analyze the subsystems that have a great impact on the performance of the system,the sensitivity analysis of the evaluation result is carried out,and the corresponding maintenance strategy is proposed.For a type of Inertial Measurement Unit(IMU)used in a rocket,the proposed method is employed to evaluate its performance.Then,the parameter sensitivity of the evaluation result is analyzed,and the main factors affecting the performance of IMU are obtained.Finally,the comparative study shows the effectiveness of the proposed method.展开更多
This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory cap...This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.展开更多
Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for...Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for high-dimensiona multi-agent systems with time-varying delays, where a cos function is defined based on state errors among neighboring agents and control inputs of all the agents. By the state space decomposition approach and the linear matrix inequality(LMI)sufficient conditions for guaranteed cost consensus and consensu alization are given. Moreover, a guaranteed cost upper bound o the cost function is determined. It should be mentioned that these LMI criteria are dependent on the change rate of time delays and the maximum time delay, the guaranteed cost upper bound is only dependent on the maximum time delay but independen of the Laplacian matrix. Finally, numerical simulations are given to demonstrate theoretical results.展开更多
This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specifi...This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specified positions.The convex hull formed by these followers contains the leaders.We use the single-integrator model to describe the dynamics of the agents and proposes a continuous-time control protocol and a sampled-data based protocol for multi-agent systems with stationary leaders with fixed network topology.Then the state differential equations are analyzed to obtain the parameter requirements for the system to achieve convergence.Moreover,the conditions achieving enclosing control are established for both protocols.A special enclosing control with no leader located on the convex hull boundary under the protocols is studied,which can effectively prevent enclosing control failures caused by errors in the system.Moreover,several simulations are proposed to validate theoretical results and compare the differences between the three control protocols.Finally,experimental results on the multi-robot platform are provided to verify the feasibility of the protocol in the physical system.展开更多
The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation app...The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification.展开更多
In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the le...In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel thr...A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers (25000 and 65000) and three channel con- figurations with different ratios of the channel height to the impingement hole diameter (Zr 1, 3, 5) are analyzed by solving the Reynolds averaged Navier-Stokes equations with the realizable k-e turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained. Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field.展开更多
A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
Once in the hands of end users, such durable equipment as spacecraft, aircraft, ships,automobiles, computers, etc. are in a state of debugging, working or storage. In either state, availability, reliability and super-...Once in the hands of end users, such durable equipment as spacecraft, aircraft, ships,automobiles, computers, etc. are in a state of debugging, working or storage. In either state, availability, reliability and super-efficiency are the ultimate goals, which have been achieved through constant monitoring as well as regular, preventive, routine and corrective maintenance. Although some advanced instruments can visualize certain invisible malfunctioning phenomena into visible ones, deeply hidden troubles cannot be found unless monitoring and testing data are addressed using tools that process the data statistically, analytically and mathematically. Some state-of-theart trouble-shooting and life-predicting techniques and approaches are introduced in this paper.展开更多
It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be...It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.展开更多
Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for co...Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for complex mechanical equipment normally needs multiple attributes,which can lead to the rule number explosion problem in BRB,and limit the efficiency and accuracy.To solve this problem,a novel Combination Belief Rule Base(C-BRB)model based on Directed Acyclic Graph(DAG)structure is proposed in this paper.By dispersing numerous attributes into the parallel structure composed of different sub-BRBs,C-BRB can effectively reduce the amount of calculation with acceptable result.At the same time,a path selection strategy considering the accuracy of child nodes is designed in C-BRB to obtain the most suitable submodels.Finally,a fusion method based on Evidential Reasoning(ER)rule is used to combine the belief rules of C-BRB and generate the final results.To illustrate the effectiveness and reliability of the proposed method,a case study of fault diagnosis of rolling bearing is conducted,and the result is compared with other methods.展开更多
In practice,since the measurement environments are usually complex,the electromagnetic interference problem has been an important issue for sensor applications,and the fiber sensor can overcome it effectively.this pap...In practice,since the measurement environments are usually complex,the electromagnetic interference problem has been an important issue for sensor applications,and the fiber sensor can overcome it effectively.this paper proposes a new type of vibration sensor based on fiber Bragg grating(FBG).The vibration sensor with double equal strength cantilever beams structure can further improve the measurement stability.The physical model of FBG vibration sensor was established,and the structural parameters of the double equa-strength cantilever beams were designed and optimized by finite element analysis.Both simulation and experimental tests are included in this paper to illustrate the low-frequency vibration performance of the designed vibration sensor.Among,the sensitivity of the sensor was 0.0240 pm/(m·s^(-2)),the natural frequency was 185 Hz,and the linearity was obtained,which further verify the stability and reliability of the sensor vibration frequency measurement.展开更多
基金funded by the National Natural Science Foundation of China(52574084)the Key Research and Development Projects of Guangdong Province(2019B111108001)+5 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515010045)the Natural Science Foundation of Jiangsu Province(BK20231217)the Independent research project of the State Key Laboratory of Subtropical Building and Urban Science(2023ZB15)the Key Laboratory of Geomechanics and Geotechnical Engineering Safety,Chinese Academy of Sciences(SKLGME023001)the Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering(sklhse-KF-2025-D-02)the Special Project on Basic and Applied Basic Research of the Guangzhou Municipal Science and Technology Bureau(2025A04J3992)。
文摘The seismic stability of the rock slope at tunnel entrances is very intricate because of the interactions among geological structures and earthquakes.However,the local damage mechanism and the correlation mechanism of accumulated damage and landslide triggering are not clear.To investigate the correlation between the inherent frequency and seismic characteristics of a layered slope at a tunnel entrance from the perspective of the frequency domain,a three-dimensional finite element modal analysis and Fourier spectrum analysis of shaking table tests were carried out.This work takes the quarry slope at the tunnel entrance in Xiamen City as a case example.The study region is predominantly affected by strong seismic activity,where the rock is primarily composed of granite with varying degrees of weathering.The results show that the seismic energy below the tunnel is mostly focused on the lowfrequency ranges,whereas the energy above the tunnel is gradually transferred to the high-frequency range.By analyzing the peak spectrum value of high-order inherent frequencies for the slope,its seismic damage evolution can be effectively identified,including fracture initiation,accelerated deformation,and sliding instability stages.The seismic response of the slope includes multi-mode interactions,which mainly include bending,torsion,and combined deformation.There are magnification effects of elevation,slope surface,and structural plane in the slope.Moreover,the triggering mechanism of the local deformation and integral sliding for the landslide is identified,which indicates that the lining structure of the tunnel entrance is more prone to seismic damage.This work successfully investigated the seismic damage evolution and failure mechanism of the slope at tunnel entrances in the frequency domain.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Natural Science Foundation of Jiangsu Province(Grant No.BK20211086)the open fund of the Key Laboratory of Earth Fissures Geological Disaster,Ministry of Natural Resources.
文摘The distribution of shear-wave velocities in the subsurface is generally used to assess the potential forseismic liquefaction and soil amplification effects and to classify seismic sites. Newly developeddistributed acoustic sensing (DAS) technology enables estimation of the shear-wave distribution as ahigh-density seismic observation system. This technology is characterized by low maintenance costs,high-resolution outputs, and real-time data transmission capabilities, albeit with the challenge ofmanaging massive data generation. Rapid and efficient interpretation of data is the key to advancingapplication of the DAS technology. In this study, field tests were carried out to record ambient noise overa short period using DAS technology, from which the surface-wave dispersion curves were extracted. Inorder to reduce the influence of directional effects on the results, an unsupervised clustering method isused to select appropriate clusters to extract the Green's function. A combination of a genetic algorithmand Monte Carlo (GA-MC) simulation is proposed to invert the subsurface velocity structure. Thestratigraphic profiles obtained by the GA-MC method are in agreement with the borehole profiles.Compared to other methods, the proposed optimization method not only improves the solution qualitybut also reduces the solution time.
基金Project(52108361)supported by the National Natural Science Foundation of ChinaProjects(BK20231217,BK20220265)supported by the Basic Research Program of Jiangsu Province,China+5 种基金Project(sklhse-KF-2025-D-02)supported by the Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,ChinaProject(2023ZB15)supported by the Independent Research Project of the State Key Laboratory of Subtropical Building and Urban Science,ChinaProject(SKLGME023001)supported by the Key Laboratory of Geomechanics and Geotechnical Engineering Safety,the Chinese Academy of SciencesProject(2025A04J3992)supported by the Basic and Applied Basic Research Project of the Guangzhou Science and Technology Bureau,ChinaProject(SKLGP2022Z015)supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project,ChinaProjects(2023YFS0436,2024NSFSC1715)supported by the Science and Technology Department of Sichuan Province,China。
文摘Steep bedding slopes are widely distributed in Southwestern China’s mountainous regions and have complex seismic responses and instability risks,causing casualties and property losses.Considering the high-seismic-intensity environment,the dynamic failure evolution and instability mechanism of high-steep bedding slopes are simulated via the discrete element method and shaking table test.The dynamic response characteristics and cumulative failure effects of slopes subjected to continuous ground motion are investigated.The results show that the dynamic response characteristics of slopes under continuous earthquakes are influenced by geological and topographic conditions.Elevation has a distinct impact on both the slope interior and surface,with amplification effects more pronounced on the surface.The weak interlayers have different influences on the dynamic amplification effect of slopes.Weak interlayers have dynamic magnification effects on the slope surface at relative elevations of 0-0.33 and 0.82-1.0 but have weakening effects between 0.33 and 0.82.Moreover,the weak interlayers also have controlling effects on the dynamic instability mode of slopes.The characteristics of intergranular contact failure,fracture propagation,and displacement distribution are analyzed to reveal the dynamic failure evolution and instability mechanism through the discrete-element model.The dynamic instability process of slopes includes three stages:fracture initiation(0-0.2g),fracture expansion(0.2g-0.3g),and sliding instability(0.3g-0.6g).This work can provide a valuable reference for the seismic stability and reinforcement of complex slopes.
基金funded by the National Natural Science Foundation of China(22078018)the Natural Science Foundation of Beijing(2222016).
文摘Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity ABE productions,but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system.Over the past decades,efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments.In this review,a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications.The recent trends in distillation sequence construction that fitting with the rapid developed upstream in situ product recovery(ISPR)systems are emphasized.Furthermore,towards developing a more efficient ABE distillation system,the review takes a broad overview of the intensification strategies for ABE distillation.Along with systematic introduction of the key examples,the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.
基金Projects(51475462,61174030,61473094,61374126)supported by the National Natural Science Foundation of China
文摘Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.
基金the National High-tech Research and Development Program of China(No.2011AA7053016)National Natural Science Foundation of China(No.61174030)
文摘Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.
基金co-supported by the National Science Foundation of China(NSFC)(Nos.61573365,61603398,61374126,61473094,and 61773386)the Young Talent Fund of University Association for Science and Technology in Shaanxi,Chinathe Young Elite Scientists Sponsorship Program(YESS)by China Association for Science and Technology(CAST)
文摘As the key part of Prognostics and Health Management(PHM), Remaining Useful Life(RUL) estimation has been extensively investigated in recent years. Current RUL estimation studies considering the intervention of imperfect maintenance activities usually assumed that maintenance activities have a single influence on the degradation level or degradation rate, but not on both.Aimed at this problem, this paper proposes a new degradation modeling and RUL estimation method taking the influence of imperfect maintenance activities on both the degradation level and the degradation rate into account. Toward this end, a stochastic degradation model considering imperfect maintenance activities is firstly constructed based on the diffusion process. Then, the Probability Density Function(PDF) of the RUL is derived by the convolution operator under the concept of First Hitting Time(FHT). To implement the proposed RUL estimation method,the Maximum Likelihood Estimation(MLE) is utilized to estimate the degradation related parameters based on the Condition Monitoring(CM) data, while the Bayesian method is utilized to estimate the maintenance related parameters based on the maintenance data. Finally, a numerical example and a practical case study are provided to demonstrate the superiority of the proposed method. The experimental results show that the proposed method could greatly improve the RUL estimation accuracy for the degrading equipment subjected to imperfect maintenance activities.
基金supported by the National Natural Science Foundation of China(Nos.61773388,61751304,61833016,and 61702142)the Shaanxi Outstanding Youth Science Foundation(No.2020JC-34)the Key Research and Development Plan of Hainan(No.ZDYF2019007)。
文摘The composition of the modern aerospace system becomes more and more complex.The performance degradation of any device in the system may cause it difficult for the whole system to keep normal working states.Therefore,it is essential to evaluate the performance of complex aerospace systems.In this paper,the performance evaluation of complex aerospace systems is regarded as a Multi-Attribute Decision Analysis(MADA)problem.Based on the structure and working principle of the system,a new Evidential Reasoning(ER)based approach with uncertain parameters is proposed to construct a nonlinear optimization model to evaluate the system performance.In the model,the interval form is used to express the uncertainty,such as error in testing data and inaccuracy in expert knowledge.In order to analyze the subsystems that have a great impact on the performance of the system,the sensitivity analysis of the evaluation result is carried out,and the corresponding maintenance strategy is proposed.For a type of Inertial Measurement Unit(IMU)used in a rocket,the proposed method is employed to evaluate its performance.Then,the parameter sensitivity of the evaluation result is analyzed,and the main factors affecting the performance of IMU are obtained.Finally,the comparative study shows the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(No.60904066)
文摘This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.
基金supported by Shaanxi Province Natural Science Foundation of Research Projects(2016JM6014)the Innovation Foundation of High-Tech Institute of Xi’an(2015ZZDJJ03)the Youth Foundation of HighTech Institute of Xi’an(2016QNJJ004)
文摘Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for high-dimensiona multi-agent systems with time-varying delays, where a cos function is defined based on state errors among neighboring agents and control inputs of all the agents. By the state space decomposition approach and the linear matrix inequality(LMI)sufficient conditions for guaranteed cost consensus and consensu alization are given. Moreover, a guaranteed cost upper bound o the cost function is determined. It should be mentioned that these LMI criteria are dependent on the change rate of time delays and the maximum time delay, the guaranteed cost upper bound is only dependent on the maximum time delay but independen of the Laplacian matrix. Finally, numerical simulations are given to demonstrate theoretical results.
基金supported in part by the National Natural Science Foundation of China(61703411,61834004)the Natural Science Foundation of Shaanxi Province(2017JM6016)。
文摘This paper proposes a control strategy called enclosing control.This strategy can be described as follows:the followers design their control inputs based on the state information of neighbor agents and move to specified positions.The convex hull formed by these followers contains the leaders.We use the single-integrator model to describe the dynamics of the agents and proposes a continuous-time control protocol and a sampled-data based protocol for multi-agent systems with stationary leaders with fixed network topology.Then the state differential equations are analyzed to obtain the parameter requirements for the system to achieve convergence.Moreover,the conditions achieving enclosing control are established for both protocols.A special enclosing control with no leader located on the convex hull boundary under the protocols is studied,which can effectively prevent enclosing control failures caused by errors in the system.Moreover,several simulations are proposed to validate theoretical results and compare the differences between the three control protocols.Finally,experimental results on the multi-robot platform are provided to verify the feasibility of the protocol in the physical system.
基金Supported by National Key Research and Development Project of China(Grant No.2020YFB2007700)State Key Laboratory of Tribology Initiative Research Program(Grant No.SKLT2020D21)+2 种基金National Natural Science Foundation of China(Grant No.51975309)Shaanxi Provincial Natural Science Foundation of China(Grant No.2019JQ-712)Young Talent Fund of University Association for Science and Technology in Shaanxi(Grant No.20170511).
文摘The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification.
基金supported by the National Natural Science Foundation of China(61203354)
文摘In this paper, we study the containment control problem for nonlinear second-order systems with unknown parameters and multiple stationary/dynamic leaders. The topologies that characterize the interaction among the leaders and the followers are directed graphs. Necessary and sufficient criteria which guarantee the control objectives are established for both stationary leaders(regulation case) and dynamic leaders(dynamic tracking case) based protocols. The final states of all the followers are exclusively determined by the initial values of the leaders and the topology structures. In the regulation case, all the followers converge into the convex hull spanned by the leaders,while in the dynamic tracking case, not only the positions of the followers converge into the convex hull but also the velocities of the followers converge into the velocity convex hull of the leaders.Finally, all the theoretical results are illustrated by numerical simulations.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
基金supported by the National Natural Science Foundation of China(No.51206180)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2014JQ7276)
文摘A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers (25000 and 65000) and three channel con- figurations with different ratios of the channel height to the impingement hole diameter (Zr 1, 3, 5) are analyzed by solving the Reynolds averaged Navier-Stokes equations with the realizable k-e turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained. Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field.
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.
基金co-supported by the National Natural Science Fundation for Distinguished Young Scholar of China(No.61025014)the National Natural Science Foundation of China(Nos.61174030,61104223,61374126,61374120,61004069 and 61370031)
文摘Once in the hands of end users, such durable equipment as spacecraft, aircraft, ships,automobiles, computers, etc. are in a state of debugging, working or storage. In either state, availability, reliability and super-efficiency are the ultimate goals, which have been achieved through constant monitoring as well as regular, preventive, routine and corrective maintenance. Although some advanced instruments can visualize certain invisible malfunctioning phenomena into visible ones, deeply hidden troubles cannot be found unless monitoring and testing data are addressed using tools that process the data statistically, analytically and mathematically. Some state-of-theart trouble-shooting and life-predicting techniques and approaches are introduced in this paper.
基金supported by the National Natural Science Foundation of China(No.61833016)the Shaanxi Outstanding Youth Science Foundation,China(No.2020JC-34)+1 种基金the Shaanxi Science and Technology Innovation Team,China(No.2022TD-24)the Natural Science Foundation of Heilongjiang Province of China(No.LH2021F038)。
文摘It is vital to establish an interpretable fault diagnosis model for critical equipment.Belief Rule Base(BRB)is an interpretable expert system gradually applied in fault diagnosis.However,the expert knowledge cannot be utilized to establish the initial BRB accurately if there are multiple referential grades in different fault features.In addition,the interpretability of BRB-based fault diagnosis is destroyed in the optimization process,which reflects in two aspects:deviation from the initial expert judgment and over-optimization of parameters.To solve these problems,a new interpretable fault diagnosis model based on BRB and probability table,called the BRB-P,is proposed in this paper.Compared with the traditional BRB,the BRB-P constructed by the probability table is more accurate.Then,the interpretability constraints,i.e.,the credibility of expert knowledge,the penalty factor and the rule-activation factor,are inserted into the projection covariance matrix adaption evolution strategy to maintain the interpretability of BRB-P.A case study of the aerospace relay is conducted to verify the effectiveness of the proposed method.
基金supported by the Natural Science Foundation of China(Nos.61773388,61751304,61833016,61702142,U1811264 and 61966009)the Shaanxi Outstanding Youth Science Foundation,China(No.2020JC-34)+2 种基金the Key Research and Development Plan of Hainan,China(No.ZDYF2019007)China Postdoctoral Science Foundation(No.2020M673668)Guangxi Key Laboratory of Trusted Software,China(No.KX202050)。
文摘Due to the excellent performance in complex systems modeling under small samples and uncertainty,Belief Rule Base(BRB)expert system has been widely applied in fault diagnosis.However,the fault diagnosis process for complex mechanical equipment normally needs multiple attributes,which can lead to the rule number explosion problem in BRB,and limit the efficiency and accuracy.To solve this problem,a novel Combination Belief Rule Base(C-BRB)model based on Directed Acyclic Graph(DAG)structure is proposed in this paper.By dispersing numerous attributes into the parallel structure composed of different sub-BRBs,C-BRB can effectively reduce the amount of calculation with acceptable result.At the same time,a path selection strategy considering the accuracy of child nodes is designed in C-BRB to obtain the most suitable submodels.Finally,a fusion method based on Evidential Reasoning(ER)rule is used to combine the belief rules of C-BRB and generate the final results.To illustrate the effectiveness and reliability of the proposed method,a case study of fault diagnosis of rolling bearing is conducted,and the result is compared with other methods.
基金supported by the Shanxi Young Talent Lifting Plan Foundation(No.20170512)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2009JQ-491)。
文摘In practice,since the measurement environments are usually complex,the electromagnetic interference problem has been an important issue for sensor applications,and the fiber sensor can overcome it effectively.this paper proposes a new type of vibration sensor based on fiber Bragg grating(FBG).The vibration sensor with double equal strength cantilever beams structure can further improve the measurement stability.The physical model of FBG vibration sensor was established,and the structural parameters of the double equa-strength cantilever beams were designed and optimized by finite element analysis.Both simulation and experimental tests are included in this paper to illustrate the low-frequency vibration performance of the designed vibration sensor.Among,the sensitivity of the sensor was 0.0240 pm/(m·s^(-2)),the natural frequency was 185 Hz,and the linearity was obtained,which further verify the stability and reliability of the sensor vibration frequency measurement.