Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion sou...Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion source neutral beam injection(NNBI)system is inevitable,which can obtain an acceptable neutralization efficiency(>55%).But the NNBI system is very complex and challengeable.To explore and master the key NNBI technology for future fusion reactor in China,an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology(CRAFT).The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 ke V for lasting 100 s.In the first operation of the CRAFT NNBI facility,a negative ion source with dual RF drivers was developed and tested.By using the 50 keV accelerator,the long-pulse and highcurrent extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV,7.3 A(~123 A/m^(2)),105 s and 55.0 keV,14.7 A(~248 A/m^(2)),30 s,respectively.By using the 200 keV accelerator,the megawatt-class negative hydrogen beam has also been achieved(135.9 keV,8.9 A,8 s).The whole process of the gas neutralization of negative ion beam,electric removal of residual ions,and beam transport have been demonstrated experimentally.展开更多
Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella(MMAF).Distinct projections encircling the central microtubules of the spermatozoal axoneme play p...Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella(MMAF).Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement.Mammalian sperm-associated antigen 17(SPAG17)encodes a conserved axonemal protein of cilia and flagella,forming part of the C1a projection of the central apparatus,with functions related to ciliary/flagellar motility,skeletal growth,and male fertility.This study investigated two novel homozygous SPAG17 mutations(M1:NM_206996.2,c.829+1G>T,p.Asp212_Glu276del;and M2:c.2120del,p.Leu707*)identified in four infertile patients from two consanguineous Pakistani families.These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa.Quantitative real-time polymerase chain reaction(PCR)of patients’spermatozoa also revealed a significant decrease in SPAG17 mRNA expression,and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella.However,no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients.Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls.Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17(SPATA17),a component of the C1a projection,and sperm-associated antigen 6(SPAG6),a marker of the spring layer,revealed disrupted expression of both proteins in the patients’spermatozoa.Altogether,these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme,expanding the phenotypic spectrum of SPAG17 mutations in humans.展开更多
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta...Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms.展开更多
Atmospheric chemistry research and atmospheric measurement techniques have mutually promoted each other and developed rapidly in China in recent years.Cavity-based absorption spectroscopy,which uses a high-finesse cav...Atmospheric chemistry research and atmospheric measurement techniques have mutually promoted each other and developed rapidly in China in recent years.Cavity-based absorption spectroscopy,which uses a high-finesse cavity to achieve very long absorption path-length,thereby achieving ultra-high detection sensitivity,plays an extremely important role in atmospheric chemistry research.Based on the Beer–Lambert law,this technology has the unique advantages of being non-destructive,chemical-free,and highly selective.It does not require any sample preparation and can quantitatively analyze atmospheric trace gases in real time and in situ.In this paper,we review the following:(1)key technological advances in different cavity-based absorption spectroscopy techniques,including cavity ring-down spectroscopy,cavityenhanced absorption spectroscopy,cavity attenuated phase shift spectroscopy,and their extensions;and(2)applications of these techniques in the detection of atmospheric reactive species,such as total peroxy radical,formaldehyde,and reactive nitrogen(e.g.,NOx,HONO,peroxy nitrates,and alkyl nitrates).The review systematically introduces cavity-based absorption spectroscopy techniques and their applications in atmospheric chemistry,which will help promote further communication and cooperation in the fields of laser spectroscopy and atmospheric chemistry.展开更多
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur...Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.展开更多
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th...Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.展开更多
Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnos...Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.展开更多
Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that...Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.展开更多
Epilepsy is a neurological disorder characterised by recurrent seizures due to abnormal neuronal discharges.Seizure detection via EEG signals has progressed,but two main challenges are still encountered.First,EEG data...Epilepsy is a neurological disorder characterised by recurrent seizures due to abnormal neuronal discharges.Seizure detection via EEG signals has progressed,but two main challenges are still encountered.First,EEG data can be distorted by physiological factors and external variables,resulting in noisy brain networks.Static adjacency matrices are typically used in current mainstream methods,which neglect the need for dynamic updates and feature refinement.The second challenge stems from the strong reliance on long-range dependencies through self-attention in current methods,which can introduce redundant noise and increase computational complexity,especially in long-duration data.To address these challenges,the Attention-based Adaptive Graph ProbSparse Hybrid Network(AA-GPHN)is proposed.Brain network structures are dynamically optimised using variational inference and the information bottleneck principle,refining the adjacency matrix for improved epilepsy classification.A Linear Graph Convolutional Network(LGCN)is incorporated to focus on first-order neighbours,minimising the aggregation of distant information.Furthermore,a ProbSparse attention-based Informer(PAT)is introduced to adaptively filter long-range dependencies,enhancing efficiency.A joint optimisation loss function is applied to improve robustness in noisy environments.Experimental results on both patient-specific and cross-subject datasets demonstrate that AA-GPHN outperforms existing methods in seizure detection,showing superior effectiveness and generalisation.展开更多
Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations a...Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems.展开更多
An atmospheric pressure plasma jet(APPJ)approach is developed to prepare platinum nanoparticles(PtNPs)under mild reaction conditions of lower temperatures and without adding chemical reagents.Optical Emission Spectros...An atmospheric pressure plasma jet(APPJ)approach is developed to prepare platinum nanoparticles(PtNPs)under mild reaction conditions of lower temperatures and without adding chemical reagents.Optical Emission Spectroscopy(OES)and X-ray Photoelectron Spectroscopy(XPS)tests revealed that the APPJ contains a large number of high-energy active particles,which can generate solvated electrons in liquid thereby promoting the rapid reduction of Pt(Ⅳ)ions into Pt(0)atoms,and these atoms gradually grow into nanoparticles.After 3 min of treatment,PtNPs exhibit excellent dispersibility with a particle size distribution ranging from 1.8 to 2.8 nm.After 5 min,the particle size increases,and aggregation occurs.The zeta potentials for the two situations were-56.0 mV and-12.5 mV respectively.The results indicate that the treatment time has a significant impact on the dispersion,particle size distribution,and sol stability of the nanoparticles.Furthermore,it reveals the formation mechanism of PtNPs prepared by APPJ,which involves the generation and expansion of nanocrystalline nuclei,and the construction of negatively charged colloidal particles.The overall mechanism highlights the importance of the plasma-liquid interaction in the synthesis of PtNPs,offering a new perspective on the controllable production of nanomaterials using plasma technology.展开更多
We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states(f PEPS)method.Our study reveals the presence of quasi-long-range order of Cooper pairs,characterized...We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states(f PEPS)method.Our study reveals the presence of quasi-long-range order of Cooper pairs,characterized by powerlaw decay of correlation functions with exponents K>1.We further analyze the competing phases of superconductivity,specifically the antiferromagnetic(AFM)order and the charge density wave(CDW)order.Our results show that there are domain wall structures when the hole dopingδis small and the Coulomb parameter U is large.However,these structures disappear as we increase the hole dopingδor decrease U.Furthermore,for small hole doping,the system exhibits AFM order,which diminishes forδ>0.05.Conversely,as the doping level increases,the CDW order gradually decreases.Notably,a considerable CDW order persists even at higher doping levels.These findings suggest a progressive suppression of the AFM order and a growing prominence of the CDW order with increasingδ.展开更多
Multiple morphological abnormalities of sperm flagella(MMAF)is a severe form of asthenoteratozoospermia,characterized by morphological abnormalities and reduced motility of sperm,causing male infertility.Although appr...Multiple morphological abnormalities of sperm flagella(MMAF)is a severe form of asthenoteratozoospermia,characterized by morphological abnormalities and reduced motility of sperm,causing male infertility.Although approximately 60%of MMAF cases can be explained genetically,the etiology of the remaining cases is unclear.Here,we identified two novel compound heterozygous variants in the gene,dynein axonemal heavy chain 10(DNAH10),in three patients from two unrelated Pakistani families using whole-exome sequencing(WES),including one compound heterozygous mutation(DNAH10:c.9409C>A[p.P3137T];c.12946G>C[p.D4316H])in family 1 and another compound heterozygous mutation(DNAH10:c.8849G>A[p.G2950D];c.11509C>T[p.R3687W])in family 2.All the identified variants are absent or rare in public genome databases and are predicted to have deleterious effects according to multiple bioinformatic tools.Sanger sequencing revealed that these variants follow an autosomal recessive mode of inheritance.Hematoxylin and eosin(H&E)staining revealed MMAF,including sperm head abnormalities,in the patients.In addition,immunofluorescence staining revealed loss of DNAH10 protein signals along sperm flagella.These findings broaden the spectrum of DNAH10 variants and expand understanding of the genetic basis of male infertility associated with the MMAF phenotype.展开更多
BACKGROUND Visceral hypersensitivity is the core pathogenesis of irritable bowel syndrome(IBS)and is often accompanied by negative emotions such as anxiety or depression.Paraventricular hypothalamic nucleus(PVN)cortic...BACKGROUND Visceral hypersensitivity is the core pathogenesis of irritable bowel syndrome(IBS)and is often accompanied by negative emotions such as anxiety or depression.Paraventricular hypothalamic nucleus(PVN)corticotropin-releasing factor(CRF)is involved in the stress-related gastrointestinal dysfunction.Electroacupuncture(EA)has unique advantages for the treatment of visceral hypersensitivity and negative emotions in IBS patients.However,the underlying mechanisms remain unclear.AIM To investigate the pathological mechanisms visceral hypersensitivity and negative emotions in IBS,as well as the effect mechanism of EA.METHODS A model of diarrhoeal IBS(IBS-D)with negative emotions was prepared by chronic restraint combined with glacial acetic acid enema.The effect of EA was verified by abdominal withdrawal reflex and open-field test.PVN CRFcolonic mast cell(MC)/transient potential receptor vanilloid type 1(TRPV1)pathway was detected by immunofluorescence,Western blot,ELISA,and toluidine blue staining.Moreover,PVN CRFergic neurons were activated or inhibited by chemogenetical technique to observe the changes of effect indicator.RESULTS In the model group,IBS-D symptoms and negative emotions were successfully induced.Notably,the combination of Baihui(GV20)with Tianshu(ST25)and Dachangshu(BL25)acupoints showed the greatest efficacy in improving the negative emotions and visceral hypersensitivity in model mice.Furthermore,we found that EA inhibited overactivated PVN CRFergic neurons and the overexpression of serum CRF,colonic CRF,CRF-receptor 1(CRFR1),mast cell tryptase(MCT),protease-activated receptor 2 and TRPV1 in model mice.Moreover,we found that activating PVN CRFergic neurons induced negative emotions and visceral hypersensitivity in normal mice;however,inhibiting PVN CRFergic neurons alleviated negative emotions and intestinal symptoms in model mice and decreased the expression of colonic CRF-R1,MCT,and TRPV1.CONCLUSION This research highlights the key role of PVN CRF-MC CRF-R1 and the downstream MC/TRPV1 pathway in the pathological process of IBS-D and the mechanism of the effect of EA.展开更多
Sustainable H_(2) production based on hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) has attracted wide attention due to minimal energy consumption compared to overall water electrolysis.The...Sustainable H_(2) production based on hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) has attracted wide attention due to minimal energy consumption compared to overall water electrolysis.The present study focuses on the design and construction of heterostructured CoPB@NiFe-OH applied as efficient bifunctional catalysts to sustainably produce hydrogen and remove hydrazine in alkaline media.Impressively,CoPB@NiFe-OH heterointerface exhibits an HzOR potential of-135 mV at the current density of 10 mA cm^(2) when the P to B atom ratio was 0.2,simultaneously an HER potential of-32 mV toward HER when the atom ratio of P and B was 0.5.Thus,hydrogen production without an outer voltage accompanied by a small current density output of 25 mA cm^(2) is achieved,surpassing most reported catalysts.In addition,DFT calculations demonstrate the Co sites in CoPB upgrades H*adsorption,while the Ni sites in NiFe-OH optimizes the adsorption energy of N_(2)H_(4)*due to electron transfer from CoPB to NiFe-OH at the heterointerface,ultimately leading to exceptional performance in hydrazine-assistant water electrolysis via HER coupled with HzOR.展开更多
Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among t...Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among the most promising candidates for this application,the relationship between Ni coordination structure and catalytic properties is still under strong debate.Here,we fabricated a series of Ni SACs through precise-engineering of anchor sites on nitrogen-doped carbon(NC)followed by Ni atom anchoring using atomic layer deposition.Among them,a Ni_(1)/NC SAC,with a coordination number(CN)of four but less pyridinic nitrogen(N_(pyri)),achieved over 90%faradaic efϐiciency for CO at potentials from-0.7 to-1.0 V and a mass activity of 6.5 A/mgNi at-0.78 V along with high stability,outperforming other Ni SACs with lower CN and more N_(pyri).Theoretical calculations of various three and four-coordinated Ni_(1)-NxCy structures revealed a linear correlation between the reaction Gibbs free energy for the potential-limiting step and the highest occupied molecular orbital(HOMO)position of Ni-3d orbitals,therein the four-coordinated Ni_(1)-N_(1)C_(3)with the highest HOMO position is identified as the active site for the electrocatalytic CO_(2)-to-CO process,in line with the experimental results.展开更多
BACKGROUND Exploring hypnotherapy's potential to modulate attention bias offers promising avenues for treating social anxiety disorder(SAD).AIM To determine if hypnotherapy can alleviate social anxiety by influenc...BACKGROUND Exploring hypnotherapy's potential to modulate attention bias offers promising avenues for treating social anxiety disorder(SAD).AIM To determine if hypnotherapy can alleviate social anxiety by influencing attention bias,specifically identifying the aspects of attention processes affected by hypnosis.METHODS In this study,69 SAD participants were divided into three groups based on their Liebowitz Social Anxiety Scale scores:Experimental group,control group,and baseline group.The experimental group(n=23)underwent six weekly hypnosis sessions,while the control(n=23)and baseline groups(n=23)received no treatment.To evaluate alterations in SAD severity and attention bias towards threatening stimuli following hypnotherapy,we employed a combination of self-report questionnaires,an odd-one-out task,and electroencephalography recordings.RESULTS The experimental group showed significant reductions in P1,N170,N2pc,and late positive potential(LPP)brain wave activities during attention sensitivity and disengagement conditions.This indicates that hypnotherapy modulates early-stage face processing and later-stage emotional evaluation of threat-related stimuli in SAD patients.CONCLUSION Our findings highlight P1,N170,N2pc,and LPP as key neural markers in SAD treatment.By identifying these neural markers influenced by hypnotherapy,we offer insight into the mechanisms by which this treatment modality impacts attentional processes,potentially easing SAD symptoms.展开更多
Multiple morphological abnormalities of the flagella(MMAF)represent a severe form of sperm defects leading to asthenozoospermia and male infertility.In this study,we identified a novel homozygous splicing mutation(c.8...Multiple morphological abnormalities of the flagella(MMAF)represent a severe form of sperm defects leading to asthenozoospermia and male infertility.In this study,we identified a novel homozygous splicing mutation(c.871-4 ACA>A)in the adenylate kinase 7(AK7)gene by whole-exome sequencing in infertile individuals.Spermatozoa from affected individuals exhibited typical MMAF characteristics,including coiled,bent,short,absent,and irregular flagella.Transmission electron microscopy analysis showed disorganized axonemal structure and abnormal mitochondrial sheets in sperm flagella.Immunofluorescence staining confirmed the absence of AK7 protein from the patients’spermatozoa,validating the pathogenic nature of the mutation.This study provides direct evidence linking the AK7 gene to MMAF-associated asthenozoospermia in humans,expanding the mutational spectrum of AK7 and enhancing our understanding of the genetic basis of male infertility.展开更多
Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by dire...Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by direct Sb doping method.It can be found that doping Sb into Bi_(2)Te_(3) lattice array for Bi-site replacement facilitates the generation of Sb′Te anti-site defects.This anti-site defects can increase the hole concentration and optimize electrical transport properties of Bi_(2−x)Sb_(x)Te_(3) alloys.In addition,the point defects induced by mass and stress fluctuations and the Sb impurities produced during the sintering process can enhance the multi-scale phonon scattering and reduce the lattice thermal conductivity.As a result,the Bi_(0.47)Sb_(1.63)Te_(3) sample has a maximum thermoelectric figure of merit ZT of 1.04 at 350 K.It is worth noting that the bipolar effect of Bi_(2)Te_(3)-based alloys can be weakened with the increase of Sb content.The Bi_(0.44)Sb_(1.66)Te_(3) sample has a maximum average ZT value(0.93)in the temperature range of 300–500 K,indicating that direct doping of Sb can broaden the temperature range corresponding to the optimal ZT value.This work provides an idea for developing high-performance near room temperature thermoelectric materials with a wide temperature range.展开更多
In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical co...In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.展开更多
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Neutral beam injection(NBI)has been proven as a reliable heating and current drive method for fusion plasma.For the high-energy NBI system(particle energy>150 ke V)of large-scale fusion devices,the negative ion source neutral beam injection(NNBI)system is inevitable,which can obtain an acceptable neutralization efficiency(>55%).But the NNBI system is very complex and challengeable.To explore and master the key NNBI technology for future fusion reactor in China,an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology(CRAFT).The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 ke V for lasting 100 s.In the first operation of the CRAFT NNBI facility,a negative ion source with dual RF drivers was developed and tested.By using the 50 keV accelerator,the long-pulse and highcurrent extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV,7.3 A(~123 A/m^(2)),105 s and 55.0 keV,14.7 A(~248 A/m^(2)),30 s,respectively.By using the 200 keV accelerator,the megawatt-class negative hydrogen beam has also been achieved(135.9 keV,8.9 A,8 s).The whole process of the gas neutralization of negative ion beam,electric removal of residual ions,and beam transport have been demonstrated experimentally.
基金supported by the National Natural Science Foundation of China(No.82171599 and No.32270901)the National Key Research and Developmental Program of China(2022YFC2702601 and 2022YFA0806303)the Global Select Project(DJKLX-2022010)of the Institute of Health and Medicine,Hefei Comprehensive National Science Center.
文摘Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella(MMAF).Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement.Mammalian sperm-associated antigen 17(SPAG17)encodes a conserved axonemal protein of cilia and flagella,forming part of the C1a projection of the central apparatus,with functions related to ciliary/flagellar motility,skeletal growth,and male fertility.This study investigated two novel homozygous SPAG17 mutations(M1:NM_206996.2,c.829+1G>T,p.Asp212_Glu276del;and M2:c.2120del,p.Leu707*)identified in four infertile patients from two consanguineous Pakistani families.These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa.Quantitative real-time polymerase chain reaction(PCR)of patients’spermatozoa also revealed a significant decrease in SPAG17 mRNA expression,and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella.However,no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients.Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls.Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17(SPATA17),a component of the C1a projection,and sperm-associated antigen 6(SPAG6),a marker of the spring layer,revealed disrupted expression of both proteins in the patients’spermatozoa.Altogether,these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme,expanding the phenotypic spectrum of SPAG17 mutations in humans.
基金Postgraduate Innovation Top notch Talent Training Project of Hunan Province,Grant/Award Number:CX20220045Scientific Research Project of National University of Defense Technology,Grant/Award Number:22-ZZCX-07+2 种基金New Era Education Quality Project of Anhui Province,Grant/Award Number:2023cxcysj194National Natural Science Foundation of China,Grant/Award Numbers:62201597,62205372,1210456foundation of Hefei Comprehensive National Science Center,Grant/Award Number:KY23C502。
文摘Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A2028,42022051,62275250,42030609,41627810,91644107,and 91544228).
文摘Atmospheric chemistry research and atmospheric measurement techniques have mutually promoted each other and developed rapidly in China in recent years.Cavity-based absorption spectroscopy,which uses a high-finesse cavity to achieve very long absorption path-length,thereby achieving ultra-high detection sensitivity,plays an extremely important role in atmospheric chemistry research.Based on the Beer–Lambert law,this technology has the unique advantages of being non-destructive,chemical-free,and highly selective.It does not require any sample preparation and can quantitatively analyze atmospheric trace gases in real time and in situ.In this paper,we review the following:(1)key technological advances in different cavity-based absorption spectroscopy techniques,including cavity ring-down spectroscopy,cavityenhanced absorption spectroscopy,cavity attenuated phase shift spectroscopy,and their extensions;and(2)applications of these techniques in the detection of atmospheric reactive species,such as total peroxy radical,formaldehyde,and reactive nitrogen(e.g.,NOx,HONO,peroxy nitrates,and alkyl nitrates).The review systematically introduces cavity-based absorption spectroscopy techniques and their applications in atmospheric chemistry,which will help promote further communication and cooperation in the fields of laser spectroscopy and atmospheric chemistry.
基金supported by the Hefei Comprehensive National Science Center Hefei Brain Project(to KW)the National Natural Science Foundation of China,Nos.31970979(to KW),82101498(to XW)the STI2030-Major Projects,No.2021ZD0201800(to PH).
文摘Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.
基金supported by the National Key Research and Development Program of China,No.2021ZD0202503(to AHT)the National Natural Science Foundation of China,Nos.31872759(to AHT)and 32070707(to CF)+1 种基金Shenzhen Science and Technology Program,No.RCJC20210609104333007(to ZW)Shenzhen-Hong Kong Institute of Brain Science,Shenzhen Fundamental Research Institutions,No.2021SHIBS0002(to ZW).
文摘Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
基金supported by the National Key Research and Development Program of China(2022YFA1404400)the National Natural Science Foundation of China(62122072,12174368,61705216,62405306)+4 种基金Anhui Provincial Department of Science and Technology(202203a07020020,18030801138)Anhui Provincial Natural Science Foundation(2308085QA21,2408085QF187)the USTC Research Funds of the Double First-Class Initiative(YD2090002015)the Institute of Artificial Intelligence at Hefei Comprehensive National Science Center(23YGXT005)the Fundamental Research Funds for the Central Universities(WK2090000083).
文摘Ultrasound computed tomography(USCT)is a noninvasive biomedical imaging modality that offers insights into acoustic properties such as the sound speed(SS)and acoustic attenuation(AA)of the human body,enhancing diagnostic accuracy and therapy planning.Full waveform inversion(FWI)is a promising USCT image reconstruction method that optimizes the parameter fields of a wave propagation model via gradient-based optimization.However,twodimensional FWI methods are limited by their inability to account for three-dimensional wave propagation in the elevation direction,resulting in image artifacts.To address this problem,we propose a three-dimensional time-domain full waveform inversion algorithm to reconstruct the SS and AA distributions on the basis of a fractional Laplacian wave equation,adjoint field formulation,and gradient descent optimization.Validated by two sets of simulations,the proposed algorithm has potential for generating high-resolution and quantitative SS and AA distributions.This approach holds promise for clinical USCT applications,assisting early disease detection,precise abnormality localization,and optimized treatment planning,thus contributing to better healthcare outcomes.
文摘Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD.
基金funded in part by the National Natural Science Foundation of China(Nos.U20A20398,62076005,and 61906002)the Natural Science Foundation of Anhui Province(2008085MF191 and 2008085QF306)the University Synergy Innovation Programme of Anhui Province,China(GXXT-2021-002).
文摘Epilepsy is a neurological disorder characterised by recurrent seizures due to abnormal neuronal discharges.Seizure detection via EEG signals has progressed,but two main challenges are still encountered.First,EEG data can be distorted by physiological factors and external variables,resulting in noisy brain networks.Static adjacency matrices are typically used in current mainstream methods,which neglect the need for dynamic updates and feature refinement.The second challenge stems from the strong reliance on long-range dependencies through self-attention in current methods,which can introduce redundant noise and increase computational complexity,especially in long-duration data.To address these challenges,the Attention-based Adaptive Graph ProbSparse Hybrid Network(AA-GPHN)is proposed.Brain network structures are dynamically optimised using variational inference and the information bottleneck principle,refining the adjacency matrix for improved epilepsy classification.A Linear Graph Convolutional Network(LGCN)is incorporated to focus on first-order neighbours,minimising the aggregation of distant information.Furthermore,a ProbSparse attention-based Informer(PAT)is introduced to adaptively filter long-range dependencies,enhancing efficiency.A joint optimisation loss function is applied to improve robustness in noisy environments.Experimental results on both patient-specific and cross-subject datasets demonstrate that AA-GPHN outperforms existing methods in seizure detection,showing superior effectiveness and generalisation.
基金supported by the National Key Research and Development Program of China(Grant No.2024YFB4504101)the National Nat-ural Science Foundation of China(Grant No.22303022)the Anhui Province Innovation Plan for Science and Technology(Grant No.202423r06050002).
文摘Using a quantum computer to simulate fermionic systems requires fermion-to-qubit transformations.Usually,lower Pauli weight of transformations means shallower quantum circuits.Therefore,most existing transformations aim for lower Pauli weight.However,in some cases,the circuit depth depends not only on the Pauli weight but also on the coefficients of the Hamiltonian terms.In order to characterize the circuit depth of these algorithms,we propose a new metric called weighted Pauli weight,which depends on Pauli weight and coefficients of Hamiltonian terms.To achieve smaller weighted Pauli weight,we introduce a novel transformation,Huffman-code-based ternary tree(HTT)transformation,which is built upon the classical Huffman code and tailored to different Hamiltonians.We tested various molecular Hamiltonians and the results show that the weighted Pauli weight of the HTT transformation is smaller than that of commonly used mappings.At the same time,the HTT transformation also maintains a relatively small Pauli weight.The mapping we designed reduces the circuit depth of certain Hamiltonian simulation algorithms,facilitating faster simulation of fermionic systems.
基金partially supported by Natural Science Research Project of Anhui Educational Committee (Nos.KJ2021A1168,KJ2021A1169 and 2024AH050620)University Synergy Innovation Program of Anhui Province (No.GXXT-2022-026)University-Industry Cooperation Practical Education Base Project (No.2022xqjdx04)。
文摘An atmospheric pressure plasma jet(APPJ)approach is developed to prepare platinum nanoparticles(PtNPs)under mild reaction conditions of lower temperatures and without adding chemical reagents.Optical Emission Spectroscopy(OES)and X-ray Photoelectron Spectroscopy(XPS)tests revealed that the APPJ contains a large number of high-energy active particles,which can generate solvated electrons in liquid thereby promoting the rapid reduction of Pt(Ⅳ)ions into Pt(0)atoms,and these atoms gradually grow into nanoparticles.After 3 min of treatment,PtNPs exhibit excellent dispersibility with a particle size distribution ranging from 1.8 to 2.8 nm.After 5 min,the particle size increases,and aggregation occurs.The zeta potentials for the two situations were-56.0 mV and-12.5 mV respectively.The results indicate that the treatment time has a significant impact on the dispersion,particle size distribution,and sol stability of the nanoparticles.Furthermore,it reveals the formation mechanism of PtNPs prepared by APPJ,which involves the generation and expansion of nanocrystalline nuclei,and the construction of negatively charged colloidal particles.The overall mechanism highlights the importance of the plasma-liquid interaction in the synthesis of PtNPs,offering a new perspective on the controllable production of nanomaterials using plasma technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12134012 and 12104433)。
文摘We investigate the hole-doped Hubbard model on a honeycomb lattice using a fermionic projected entangled pair states(f PEPS)method.Our study reveals the presence of quasi-long-range order of Cooper pairs,characterized by powerlaw decay of correlation functions with exponents K>1.We further analyze the competing phases of superconductivity,specifically the antiferromagnetic(AFM)order and the charge density wave(CDW)order.Our results show that there are domain wall structures when the hole dopingδis small and the Coulomb parameter U is large.However,these structures disappear as we increase the hole dopingδor decrease U.Furthermore,for small hole doping,the system exhibits AFM order,which diminishes forδ>0.05.Conversely,as the doping level increases,the CDW order gradually decreases.Notably,a considerable CDW order persists even at higher doping levels.These findings suggest a progressive suppression of the AFM order and a growing prominence of the CDW order with increasingδ.
基金supported by the National Natural Science Foundation of China(No.32100689)the National Key Research and Development Program of China(No.2021YFC2700202,No.2022YFA0806303,and No.2022YFC2702601)+1 种基金the Global Select Project(No.DJK-LX-2022010)of the Institute of Health and MedicineHefei Comprehensive National Science Center,and the Joint Fund for New Medicine of USTC(No.YD9100002034).
文摘Multiple morphological abnormalities of sperm flagella(MMAF)is a severe form of asthenoteratozoospermia,characterized by morphological abnormalities and reduced motility of sperm,causing male infertility.Although approximately 60%of MMAF cases can be explained genetically,the etiology of the remaining cases is unclear.Here,we identified two novel compound heterozygous variants in the gene,dynein axonemal heavy chain 10(DNAH10),in three patients from two unrelated Pakistani families using whole-exome sequencing(WES),including one compound heterozygous mutation(DNAH10:c.9409C>A[p.P3137T];c.12946G>C[p.D4316H])in family 1 and another compound heterozygous mutation(DNAH10:c.8849G>A[p.G2950D];c.11509C>T[p.R3687W])in family 2.All the identified variants are absent or rare in public genome databases and are predicted to have deleterious effects according to multiple bioinformatic tools.Sanger sequencing revealed that these variants follow an autosomal recessive mode of inheritance.Hematoxylin and eosin(H&E)staining revealed MMAF,including sperm head abnormalities,in the patients.In addition,immunofluorescence staining revealed loss of DNAH10 protein signals along sperm flagella.These findings broaden the spectrum of DNAH10 variants and expand understanding of the genetic basis of male infertility associated with the MMAF phenotype.
基金Supported by the Excellent Youth Project of Anhui Universities,No.2022AH030065National Natural Science Foundation of China,No.82474224 and No.82405244+3 种基金Anhui Provincial Natural Science Foundation,No.2408085MH223Open Projects of Anhui Province Key Laboratory of Meridian Viscera Correlationship,No.2024AHMVC04Research Project of Xin’an Medical and Chinese Medicine Modernization Research Institute,No.2023CXMMTCM016the Anhui Province Scientific Research Planning Project,No.2022AH050438.
文摘BACKGROUND Visceral hypersensitivity is the core pathogenesis of irritable bowel syndrome(IBS)and is often accompanied by negative emotions such as anxiety or depression.Paraventricular hypothalamic nucleus(PVN)corticotropin-releasing factor(CRF)is involved in the stress-related gastrointestinal dysfunction.Electroacupuncture(EA)has unique advantages for the treatment of visceral hypersensitivity and negative emotions in IBS patients.However,the underlying mechanisms remain unclear.AIM To investigate the pathological mechanisms visceral hypersensitivity and negative emotions in IBS,as well as the effect mechanism of EA.METHODS A model of diarrhoeal IBS(IBS-D)with negative emotions was prepared by chronic restraint combined with glacial acetic acid enema.The effect of EA was verified by abdominal withdrawal reflex and open-field test.PVN CRFcolonic mast cell(MC)/transient potential receptor vanilloid type 1(TRPV1)pathway was detected by immunofluorescence,Western blot,ELISA,and toluidine blue staining.Moreover,PVN CRFergic neurons were activated or inhibited by chemogenetical technique to observe the changes of effect indicator.RESULTS In the model group,IBS-D symptoms and negative emotions were successfully induced.Notably,the combination of Baihui(GV20)with Tianshu(ST25)and Dachangshu(BL25)acupoints showed the greatest efficacy in improving the negative emotions and visceral hypersensitivity in model mice.Furthermore,we found that EA inhibited overactivated PVN CRFergic neurons and the overexpression of serum CRF,colonic CRF,CRF-receptor 1(CRFR1),mast cell tryptase(MCT),protease-activated receptor 2 and TRPV1 in model mice.Moreover,we found that activating PVN CRFergic neurons induced negative emotions and visceral hypersensitivity in normal mice;however,inhibiting PVN CRFergic neurons alleviated negative emotions and intestinal symptoms in model mice and decreased the expression of colonic CRF-R1,MCT,and TRPV1.CONCLUSION This research highlights the key role of PVN CRF-MC CRF-R1 and the downstream MC/TRPV1 pathway in the pathological process of IBS-D and the mechanism of the effect of EA.
基金the Department of Science and Technology of Anhui Province(2022h11020024)Anhui Construction Engineering Group Co.,Ltd.(SG2025Q11)+4 种基金Basic Research Project from Institute of Coal Chemistry,CAS(SCJC-HN-2022-17)Shanxi Province Science Foundation(20210302124446202102070301018)The University Synergy Innovation Program of Anhui Province(GXXT-2022-27)Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)for funding。
文摘Sustainable H_(2) production based on hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) has attracted wide attention due to minimal energy consumption compared to overall water electrolysis.The present study focuses on the design and construction of heterostructured CoPB@NiFe-OH applied as efficient bifunctional catalysts to sustainably produce hydrogen and remove hydrazine in alkaline media.Impressively,CoPB@NiFe-OH heterointerface exhibits an HzOR potential of-135 mV at the current density of 10 mA cm^(2) when the P to B atom ratio was 0.2,simultaneously an HER potential of-32 mV toward HER when the atom ratio of P and B was 0.5.Thus,hydrogen production without an outer voltage accompanied by a small current density output of 25 mA cm^(2) is achieved,surpassing most reported catalysts.In addition,DFT calculations demonstrate the Co sites in CoPB upgrades H*adsorption,while the Ni sites in NiFe-OH optimizes the adsorption energy of N_(2)H_(4)*due to electron transfer from CoPB to NiFe-OH at the heterointerface,ultimately leading to exceptional performance in hydrazine-assistant water electrolysis via HER coupled with HzOR.
文摘Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among the most promising candidates for this application,the relationship between Ni coordination structure and catalytic properties is still under strong debate.Here,we fabricated a series of Ni SACs through precise-engineering of anchor sites on nitrogen-doped carbon(NC)followed by Ni atom anchoring using atomic layer deposition.Among them,a Ni_(1)/NC SAC,with a coordination number(CN)of four but less pyridinic nitrogen(N_(pyri)),achieved over 90%faradaic efϐiciency for CO at potentials from-0.7 to-1.0 V and a mass activity of 6.5 A/mgNi at-0.78 V along with high stability,outperforming other Ni SACs with lower CN and more N_(pyri).Theoretical calculations of various three and four-coordinated Ni_(1)-NxCy structures revealed a linear correlation between the reaction Gibbs free energy for the potential-limiting step and the highest occupied molecular orbital(HOMO)position of Ni-3d orbitals,therein the four-coordinated Ni_(1)-N_(1)C_(3)with the highest HOMO position is identified as the active site for the electrocatalytic CO_(2)-to-CO process,in line with the experimental results.
基金Supported by National Natural Science Foundation of China,No.82090034the Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention,No.SYS2023B08the Anhui Natural Science Foundation,No.2023AH040086.
文摘BACKGROUND Exploring hypnotherapy's potential to modulate attention bias offers promising avenues for treating social anxiety disorder(SAD).AIM To determine if hypnotherapy can alleviate social anxiety by influencing attention bias,specifically identifying the aspects of attention processes affected by hypnosis.METHODS In this study,69 SAD participants were divided into three groups based on their Liebowitz Social Anxiety Scale scores:Experimental group,control group,and baseline group.The experimental group(n=23)underwent six weekly hypnosis sessions,while the control(n=23)and baseline groups(n=23)received no treatment.To evaluate alterations in SAD severity and attention bias towards threatening stimuli following hypnotherapy,we employed a combination of self-report questionnaires,an odd-one-out task,and electroencephalography recordings.RESULTS The experimental group showed significant reductions in P1,N170,N2pc,and late positive potential(LPP)brain wave activities during attention sensitivity and disengagement conditions.This indicates that hypnotherapy modulates early-stage face processing and later-stage emotional evaluation of threat-related stimuli in SAD patients.CONCLUSION Our findings highlight P1,N170,N2pc,and LPP as key neural markers in SAD treatment.By identifying these neural markers influenced by hypnotherapy,we offer insight into the mechanisms by which this treatment modality impacts attentional processes,potentially easing SAD symptoms.
基金supported by the National Key Research and Development Program of China(No.2021YFC2700202,No.2022YFA0806303,and No.2022YFC2702601)the Global Select Project of the Institute of Health and Medicine,Hefei Comprehensive National Science Center(DJK-LX-2022010)the Joint Fund for New Medicine of USTC(YD9100002034).
文摘Multiple morphological abnormalities of the flagella(MMAF)represent a severe form of sperm defects leading to asthenozoospermia and male infertility.In this study,we identified a novel homozygous splicing mutation(c.871-4 ACA>A)in the adenylate kinase 7(AK7)gene by whole-exome sequencing in infertile individuals.Spermatozoa from affected individuals exhibited typical MMAF characteristics,including coiled,bent,short,absent,and irregular flagella.Transmission electron microscopy analysis showed disorganized axonemal structure and abnormal mitochondrial sheets in sperm flagella.Immunofluorescence staining confirmed the absence of AK7 protein from the patients’spermatozoa,validating the pathogenic nature of the mutation.This study provides direct evidence linking the AK7 gene to MMAF-associated asthenozoospermia in humans,expanding the mutational spectrum of AK7 and enhancing our understanding of the genetic basis of male infertility.
基金supported by the Anhui Province Natural Science Foundation for Excellent Youth Scholars(2208085Y17)the University Synergy Innovation Program of Anhui Province(GXXT-2022-008+1 种基金GXXT-2021-022)the Anhui Key Lab of Metal Material and Processing Open Project.
文摘Doping modification is one of the most effective ways to optimize the thermoelectric properties of Bi_(2)Te_(3)-based alloys.P-type Bi_(2−x)Sb_(x)Te_(3) thermoelectric materials have been successfully prepared by direct Sb doping method.It can be found that doping Sb into Bi_(2)Te_(3) lattice array for Bi-site replacement facilitates the generation of Sb′Te anti-site defects.This anti-site defects can increase the hole concentration and optimize electrical transport properties of Bi_(2−x)Sb_(x)Te_(3) alloys.In addition,the point defects induced by mass and stress fluctuations and the Sb impurities produced during the sintering process can enhance the multi-scale phonon scattering and reduce the lattice thermal conductivity.As a result,the Bi_(0.47)Sb_(1.63)Te_(3) sample has a maximum thermoelectric figure of merit ZT of 1.04 at 350 K.It is worth noting that the bipolar effect of Bi_(2)Te_(3)-based alloys can be weakened with the increase of Sb content.The Bi_(0.44)Sb_(1.66)Te_(3) sample has a maximum average ZT value(0.93)in the temperature range of 300–500 K,indicating that direct doping of Sb can broaden the temperature range corresponding to the optimal ZT value.This work provides an idea for developing high-performance near room temperature thermoelectric materials with a wide temperature range.
基金supported in part by the National Natural Science Foundation of China(62133013,U22A2060)Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM01Z024)。
文摘In this paper,a framework of model predictive optimization and control for quadruped whole-body locomotion is presented,which enables dynamic balance and minimizes the control effort.First,we propose a hierarchical control scheme consisting of two modules.The first layer is to find an optimal ground reaction force(GRF)by employing inner model predictive control(MPC)along a full motor gait cycle,ensuring the minimal energy consumption of the system.Based on the output GRF of inner layer,the second layer is designed to prioritize tasks for motor execution sequentially using an outer model predictive control.In inner MPC,an objective function about GRF is designed by using a model with relatively long time horizons.Then a neural network solver is used to obtain the optimal GRF by minimizing the objective function.By using a two-layered MPC architecture,we design a hybrid motion/force controller to handle the impedance of leg joints and robotic uncertainties including external perturbation.Finally,we perform extensive experiments with a quadruped robot,including the crawl and trotting gaits,to verify the proposed control framework.