Using mesoscale numerical model WRFV3.7,simulation tests of a low-vortex rainstorm were carried out in Langfang area,and simulation results of three boundary layer parameterization schemes(MYJ,YSU,ACM2)were contrasted...Using mesoscale numerical model WRFV3.7,simulation tests of a low-vortex rainstorm were carried out in Langfang area,and simulation results of three boundary layer parameterization schemes(MYJ,YSU,ACM2)were contrasted.The results showed that the rainstorm in Langfang area had better dynamic condition.By the influence of northeast cold vortex,cold vortex at high altitude cooperated with the surface wind speed convergence,which provided better dynamic condition for strong convective rainfall.Three boundary layer parameterization schemes all simulated surface wind speed convergence of rainstorm center.Simulation results of 24-h rainfall distribution showed that the simulation of YSU scheme was better than ACM2 and MYJ.The simulation results of flow field and temperature field also verified that YSU scheme was better than other schemes.展开更多
This paper introduces a new physical parameter -- thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturb...This paper introduces a new physical parameter -- thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.展开更多
An aircraft precipitation operation and detecting was implemented by Hebei Weather Modification Office over Shijiazhuang City during18:18-19:37 on April 2,2014. The detecting area was near 500 hP a of high-altitude tr...An aircraft precipitation operation and detecting was implemented by Hebei Weather Modification Office over Shijiazhuang City during18:18-19:37 on April 2,2014. The detecting area was near 500 hP a of high-altitude trough and surface inverted trough. Slight shower had appeared in Tianjin( rear of inverted trough) and Shanxi Province( near the inverted trough) at 20:00,while there was not precipitation in Hebei Province which was near the inverted trough. Analysis showed that the water vapor supply was not enough below 550 hP a in south-central Hebei Province,and cloud system development condition was poor. The cold cloud developed better,but there was not warm cloud,causing no precipitation on the ground.展开更多
Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation ...Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.展开更多
文摘Using mesoscale numerical model WRFV3.7,simulation tests of a low-vortex rainstorm were carried out in Langfang area,and simulation results of three boundary layer parameterization schemes(MYJ,YSU,ACM2)were contrasted.The results showed that the rainstorm in Langfang area had better dynamic condition.By the influence of northeast cold vortex,cold vortex at high altitude cooperated with the surface wind speed convergence,which provided better dynamic condition for strong convective rainfall.Three boundary layer parameterization schemes all simulated surface wind speed convergence of rainstorm center.Simulation results of 24-h rainfall distribution showed that the simulation of YSU scheme was better than ACM2 and MYJ.The simulation results of flow field and temperature field also verified that YSU scheme was better than other schemes.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421505)the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (KZCX2-YW-206-4)+2 种基金the National Natural Science Foundation of China(Grant Nos. 40875032 and 40875002)the Major Foreland Project of IAP (IAP07201)the National Science and Technology Project,China (GYH200706042)
文摘This paper introduces a new physical parameter -- thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.
基金Supported by National Natural Science Fund(41475121)Science and Technology Plan Item of Hebei Province(17227001D)
文摘An aircraft precipitation operation and detecting was implemented by Hebei Weather Modification Office over Shijiazhuang City during18:18-19:37 on April 2,2014. The detecting area was near 500 hP a of high-altitude trough and surface inverted trough. Slight shower had appeared in Tianjin( rear of inverted trough) and Shanxi Province( near the inverted trough) at 20:00,while there was not precipitation in Hebei Province which was near the inverted trough. Analysis showed that the water vapor supply was not enough below 550 hP a in south-central Hebei Province,and cloud system development condition was poor. The cold cloud developed better,but there was not warm cloud,causing no precipitation on the ground.
基金Supported by Open Research Fund Project of Key Laboratory of Meteorology and Ecological Environment of Hebei Province(Z202001Z,Z201602Z)Science and Technology Collaborative Innovation Fund Project in Bohai Rim Region(QYXM202004)Key Projects of Tianjin Meteorological Bureau(201801zdxm01)。
文摘Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.