This study provides an in-depth exploration of seaweed biodiversity in Nigeria’s coastal waters, a largely unexplored area for marine resources. There is a dearth of sufficient data on seaweed biodiversity in Nigeria...This study provides an in-depth exploration of seaweed biodiversity in Nigeria’s coastal waters, a largely unexplored area for marine resources. There is a dearth of sufficient data on seaweed biodiversity in Nigeria. The research aimed to assess the diversity and distribution of seaweeds in this region. Seaweed samples were collected by hand, using scrapers, at low tide from four stations identified by local fisherfolk and commercial divers. These samples were analyzed in the laboratory for species identification. A total of 39 seaweed taxa were identified, with Rhodophyta (red algae) being the most abundant (74%), followed by Chlorophyta (green algae) (21%) and Heterokontophyta (brown algae) (5%). The highest biomass species included Grateloupia sp., Chaetomorpha antennina, Gracilaria sp., Ceratodictyon variabile, Cladophora sp., Gelidium pusillum, Ulva sp., Blidingia minima, and Caloglossa leprieurii. Species abundance was highest on breakwater rocks and on the bodies of anchored or sunken vessels, while sandy beaches exhibited lower abundance. The findings reveal significant potential for Nigeria’s seaweed in aquaculture, climate change mitigation, and biotechnology. The study recommends further molecular research, expansion of sampling areas, and the development of sustainable seaweed cultivation practices to support Nigeria’s blue economy.展开更多
The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied ...The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied successfully to mixed oxide and chalcocite ores, notably in Chile at Cerro Colorado, Quebrada Blanca and Zaldivar. Currently, there are significant development efforts underway to try to extend heap leaching to chalcopyrite ores. The success of heap leaching/SX/EW has also led to a revival in the development of hydrometallurgical processes to recover copper from chalcopyrite and other copper concentrates. The current status of copper hydrometallurgy is reviewed and the most commercially attractive potential applications are explored. The advantages and disadvantages of the hydrometallurgical treatment of chalcopyrite concentrates and its preliminary economics are compared with those for the current best practices in copper smelting and refining.展开更多
With the scale and cost of geotechnical engineering projects increasing rapidly over the past few decades,there is a clear need for the careful consideration of calculated risks in design.While risk is typically dealt...With the scale and cost of geotechnical engineering projects increasing rapidly over the past few decades,there is a clear need for the careful consideration of calculated risks in design.While risk is typically dealt with subjectively through the use of conservative design parameters,with the advent of reliability-based methods,this no longer needs to be the case.Instead,a quantitative risk approach can be considered that incorporates uncertainty in ground conditions directly into the design process to determine the variable ground response and support loads.This allows for the optimization of support on the basis of both worker safety and economic risk.This paper presents the application of such an approach to review the design of the initial lining system along a section of the Driskos twin tunnels as part of the Egnatia Odos highway in northern Greece.Along this section of tunnel,weak rock masses were encountered as well as high in situ stress conditions,which led to excessive deformations and failure of the as built temporary support.Monitoring data were used to validate the rock mass parameters selected in this area and a risk approach was used to determine,in hindsight,the most appropriate support category with respect to the cost of installation and expected cost of failure.Different construction sequences were also considered in the context of both convenience and risk cost.展开更多
Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit...Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit finite element method(FEM) and bonded particle model(BPM),in order to improve cutting efficiency.This study investigates the application of a general-purpose graphic-processing-unit parallelised hybrid finite-discrete element method(FDEM) which enjoys the advantages of both explicit FEM and BPM,in modelling the rock chipping and fragmentation process in the rock scratch test of mechanical rock cutting.The input parameters of FDEM are determined through a calibration procedure of modelling conventional Brazilian tensile and uniaxial compressive tests of limestone,A series of scratch tests with various cutting velocities,cutter rake angles and cutting depths is then modelled using FDEM with calibrated input parameters.A few cycles of cutter/rock interactions,including their engagement and detachment process,are modelled for each case,which is conducted for the first time to the best knowledge of the authors,thanks to the general purpose graphic processing units(GPGPU) parallelisation.The failure mechanism,cutting force,chipping morphology and effect of various factors on them are discussed on the basis of the modelled results.Finally,it is concluded that GPGPU-parallelised FDEM provides a powerful tool to further study rock cutting and improve cutting efficiencies since it can explicitly capture different fracture mechanisms contributing to the rock chipping as well as chip formation and the separation process in mechanical cutting.Moreover,it is concluded that chipping is mostly owed to the mix-mode Ⅰ-Ⅱ fracture in all cases although mode Ⅱ cracks and mode Ⅰ cracks are the dominant failures in rock cutting with shallow and deep cutting depths,respectively.The chip morphology is found to be a function of cutter velocdty,cutting depth and cutter rake angle.展开更多
The processing of iron ore to recover the valuable iron oxide minerals is commonly carried out using spiral concentrators that separate valuable minerals from non-valuable ones on the basis of the specific gravity of ...The processing of iron ore to recover the valuable iron oxide minerals is commonly carried out using spiral concentrators that separate valuable minerals from non-valuable ones on the basis of the specific gravity of minerals. This paper shows that the analysis of the operation of spirals should not only focus on the minerals (as it is usually the case), but should also consider the particle size of these minerals. Indeed, the sampling of two industrial iron ore circuits and the data processing of the resulting measurements show that unexpectedly about 10% of the coarse heavy iron oxide minerals are not recovered by the spirals of the two circuits. Tests conducted by an independent research center confirm this plant observation. The pilot plant tests also show that the wash water flowrate addition may adversely affect the recovery of coarse heavy mineral particles. A mathematical model for the spiral was implemented into a simulator for an iron ore gravity concentration circuit. The simulator shows a potential 0.7% increase of iron recovery by simply changing the strategy used to distribute the wash water between the rougher and the cleaner/recleaner spirals of the circuit. The simulator also shows that the introduction of a hydraulic classifier into the gravity concentration circuit yields a marginal improvement to the performances of the circuit.展开更多
文摘This study provides an in-depth exploration of seaweed biodiversity in Nigeria’s coastal waters, a largely unexplored area for marine resources. There is a dearth of sufficient data on seaweed biodiversity in Nigeria. The research aimed to assess the diversity and distribution of seaweeds in this region. Seaweed samples were collected by hand, using scrapers, at low tide from four stations identified by local fisherfolk and commercial divers. These samples were analyzed in the laboratory for species identification. A total of 39 seaweed taxa were identified, with Rhodophyta (red algae) being the most abundant (74%), followed by Chlorophyta (green algae) (21%) and Heterokontophyta (brown algae) (5%). The highest biomass species included Grateloupia sp., Chaetomorpha antennina, Gracilaria sp., Ceratodictyon variabile, Cladophora sp., Gelidium pusillum, Ulva sp., Blidingia minima, and Caloglossa leprieurii. Species abundance was highest on breakwater rocks and on the bodies of anchored or sunken vessels, while sandy beaches exhibited lower abundance. The findings reveal significant potential for Nigeria’s seaweed in aquaculture, climate change mitigation, and biotechnology. The study recommends further molecular research, expansion of sampling areas, and the development of sustainable seaweed cultivation practices to support Nigeria’s blue economy.
文摘The heap leaching of oxide copper ores with copper cathode recovery by solvent extraction and electro-winning is now well established as a low-cost method of copper recovery. This technology has recently been applied successfully to mixed oxide and chalcocite ores, notably in Chile at Cerro Colorado, Quebrada Blanca and Zaldivar. Currently, there are significant development efforts underway to try to extend heap leaching to chalcopyrite ores. The success of heap leaching/SX/EW has also led to a revival in the development of hydrometallurgical processes to recover copper from chalcopyrite and other copper concentrates. The current status of copper hydrometallurgy is reviewed and the most commercially attractive potential applications are explored. The advantages and disadvantages of the hydrometallurgical treatment of chalcopyrite concentrates and its preliminary economics are compared with those for the current best practices in copper smelting and refining.
文摘With the scale and cost of geotechnical engineering projects increasing rapidly over the past few decades,there is a clear need for the careful consideration of calculated risks in design.While risk is typically dealt with subjectively through the use of conservative design parameters,with the advent of reliability-based methods,this no longer needs to be the case.Instead,a quantitative risk approach can be considered that incorporates uncertainty in ground conditions directly into the design process to determine the variable ground response and support loads.This allows for the optimization of support on the basis of both worker safety and economic risk.This paper presents the application of such an approach to review the design of the initial lining system along a section of the Driskos twin tunnels as part of the Egnatia Odos highway in northern Greece.Along this section of tunnel,weak rock masses were encountered as well as high in situ stress conditions,which led to excessive deformations and failure of the as built temporary support.Monitoring data were used to validate the rock mass parameters selected in this area and a risk approach was used to determine,in hindsight,the most appropriate support category with respect to the cost of installation and expected cost of failure.Different construction sequences were also considered in the context of both convenience and risk cost.
基金the support of CSIRO and the Australia-Japan Foundation(Grant No.17/20470)supported by the Japan Society for the Promotion of Science KAKENHI(Grant No.JP18K14165)for Grant-in-Aid for Young Scientists。
文摘Mechanical cutting provides one of the most flexible and environmentally friendly excavation methods.It has attracted numerous efforts to model the rock chipping and fragmentation process,especially using the explicit finite element method(FEM) and bonded particle model(BPM),in order to improve cutting efficiency.This study investigates the application of a general-purpose graphic-processing-unit parallelised hybrid finite-discrete element method(FDEM) which enjoys the advantages of both explicit FEM and BPM,in modelling the rock chipping and fragmentation process in the rock scratch test of mechanical rock cutting.The input parameters of FDEM are determined through a calibration procedure of modelling conventional Brazilian tensile and uniaxial compressive tests of limestone,A series of scratch tests with various cutting velocities,cutter rake angles and cutting depths is then modelled using FDEM with calibrated input parameters.A few cycles of cutter/rock interactions,including their engagement and detachment process,are modelled for each case,which is conducted for the first time to the best knowledge of the authors,thanks to the general purpose graphic processing units(GPGPU) parallelisation.The failure mechanism,cutting force,chipping morphology and effect of various factors on them are discussed on the basis of the modelled results.Finally,it is concluded that GPGPU-parallelised FDEM provides a powerful tool to further study rock cutting and improve cutting efficiencies since it can explicitly capture different fracture mechanisms contributing to the rock chipping as well as chip formation and the separation process in mechanical cutting.Moreover,it is concluded that chipping is mostly owed to the mix-mode Ⅰ-Ⅱ fracture in all cases although mode Ⅱ cracks and mode Ⅰ cracks are the dominant failures in rock cutting with shallow and deep cutting depths,respectively.The chip morphology is found to be a function of cutter velocdty,cutting depth and cutter rake angle.
文摘The processing of iron ore to recover the valuable iron oxide minerals is commonly carried out using spiral concentrators that separate valuable minerals from non-valuable ones on the basis of the specific gravity of minerals. This paper shows that the analysis of the operation of spirals should not only focus on the minerals (as it is usually the case), but should also consider the particle size of these minerals. Indeed, the sampling of two industrial iron ore circuits and the data processing of the resulting measurements show that unexpectedly about 10% of the coarse heavy iron oxide minerals are not recovered by the spirals of the two circuits. Tests conducted by an independent research center confirm this plant observation. The pilot plant tests also show that the wash water flowrate addition may adversely affect the recovery of coarse heavy mineral particles. A mathematical model for the spiral was implemented into a simulator for an iron ore gravity concentration circuit. The simulator shows a potential 0.7% increase of iron recovery by simply changing the strategy used to distribute the wash water between the rougher and the cleaner/recleaner spirals of the circuit. The simulator also shows that the introduction of a hydraulic classifier into the gravity concentration circuit yields a marginal improvement to the performances of the circuit.