期刊文献+
共找到2,179篇文章
< 1 2 109 >
每页显示 20 50 100
New strategy for Mg-air battery voltage-efficiency synergy by engineering protective film with cation vacancies on Mg anode surface 被引量:1
1
作者 Yuying He Qianyu Wang +6 位作者 Jinghuai Zhang Lele Wang Shujuan Liu Zehua Li Zhen Wei Hao Dong Xiaobo Zhang 《Journal of Materials Science & Technology》 2025年第10期24-41,共18页
Although the Mg-air battery with high theoretical energy density is desirable for the energy supply of marine engineering equipment,its applications remain limited due to the low actual discharge voltage and inferior ... Although the Mg-air battery with high theoretical energy density is desirable for the energy supply of marine engineering equipment,its applications remain limited due to the low actual discharge voltage and inferior Mg anode utilization rate.In addition to the microstructure of Mg alloy anodes,the properties of discharge product films are of great importance to the discharge performance.Herein,the discharge behaviors of Mg-Y-Zn alloys are first studied mainly from the perspective of film properties.Through contrastive analysis,it is found that the sufficient Y^(3+) produced during the discharge process can substitute Mg^(2+) in Mg(OH)_(2) to introduce effective cation vacancies.The Mg-Y-Zn anode with profuse cation vacancies in the product film shows a synergy of potential and efficiency,and this can be attributed to an increase in the migration pathway for Mg^(2+),reducing the diffusion over-potential caused by the protective product film.This study is expected to provide a new strategy from the perspective of cation vacancy design of discharge film for developing high-performance Mg-air batteries. 展开更多
关键词 Mg alloy Mg-air battery Product film Cation vacancy Discharge performance
原文传递
Preface for the Special Issue on“Safety of Slender Composite Flexible Structures in Ocean Engineering”
2
作者 YANG Zhi-xun 《China Ocean Engineering》 2025年第5期791-792,共2页
The ocean holds abundant petroleum,natural gas,and mineral resources that form an essential material foundation for the sustainable development of modern society.The safe and efficient exploitation of these resources ... The ocean holds abundant petroleum,natural gas,and mineral resources that form an essential material foundation for the sustainable development of modern society.The safe and efficient exploitation of these resources depends heavily on various slender,composite,flexible structures,including umbilical cables,dynamic power cables for offshore wind turbines,petroleum pipelines(both bonded and unbonded),deep-sea mining risers,and LNG cryogenic flexible hoses.These structures feature highly complex configurations and incur substantial design and manufacturing costs,while operating in environments far more severe and variable than those of onshore pipelines.They must withstand multisource stochastic loads generated by the combined action of wind,waves,currents,and tides,and maintain robustness under extreme conditions such as typhoons,earthquakes,and explosions. 展开更多
关键词 sustainable development mineral resources ocean engineering umbilical cables offshore wind turbinespetroleum pipelines both umbilical cablesdynamic power cables safety lng cryogenic flexible hosesthese
在线阅读 下载PDF
Modulating Electromagnetic Genes Through Bi‑Phase High‑Entropy Engineering Toward Temperature‑Stable Ultra‑Broadband Megahertz Electromagnetic Wave Absorption
3
作者 Xiaoji Liu Yuping Duan +14 位作者 Nan Wu Guangming Li Yuan Guo Jiangyong Liu Ning Zhu Qiang Wang Lin Wang Zichen Xu Hao Wei Guojun Wang Zhijia Zhang Songsong Zhang Wenjun Zhou Teng Ma Tongmin Wang 《Nano-Micro Letters》 2025年第7期254-269,共16页
Magnetic absorbers with high permeability have significant advantages in lowfrequency and broadband electromagnetic wave(EMW)absorption.However,the insufficient magnetic loss and inherent high conductivity of existing... Magnetic absorbers with high permeability have significant advantages in lowfrequency and broadband electromagnetic wave(EMW)absorption.However,the insufficient magnetic loss and inherent high conductivity of existing magnetic absorbers limit the further expansion of EMW absorption bandwidth.Herein,the spinel(FeCoNiCrCu)_(3)O_(4) high-entropy oxides(HEO)are successfully constructed on the surface of FeCoNiCr_(0.4)Cu_(0.2) high-entropy alloys(HEA)through low-temperature oxygen bath treatment.On the one hand,HEO and HEA have different magnetocrystalline anisotropies,which is conducive to achieving continuous natural resonance to improve magnetic loss.On the other hand,HEO with low conductivity can serve as an impedance matching layer,achieving magneto-electric co-modulation.When the thickness is 5 mm,the minimum reflection loss(RL)value and absorption bandwidth(RL<−5 dB)of bi-phase high-entropy composites(BPHEC)can reach−12.8 dB and 633 MHz,respectively.The RCS reduction value of multilayer sample with impedance gradient characteristic can reach 18.34 dB m^(2).In addition,the BPHEC also exhibits temperaturestable EMW absorption performance,high Curie temperature,and oxidation resistance.The absorption bandwidth maintains between 593 and 691 MHz from−50 to 150℃.This work offers a new and tunable strategy toward modulating the electromagnetic genes for temperature-stable ultra-broadband megahertz EMW absorption. 展开更多
关键词 Bi-phase high-entropy composites Electromagnetic genes Electromagnetic wave absorption Continuous natural resonance ULTRA-BROADBAND
在线阅读 下载PDF
Interface engineering to optimize the catalytic activity of Fe,Co,and Ti sites in FeCoP/MXene toward efficient overall water splitting
4
作者 He-He Wei Xin-Xin Zhang +3 位作者 Si-Wei Sun Shi-Li Gai Hai-Tao Yu Ying Xie 《Rare Metals》 2025年第10期7385-7403,共19页
Transition metal phosphides(TMPs),with tunable electronic structures and diverse compositions,are promising candidates for electrocatalytic water splitting.However,their unsatisfactory electrical conductivity and tend... Transition metal phosphides(TMPs),with tunable electronic structures and diverse compositions,are promising candidates for electrocatalytic water splitting.However,their unsatisfactory electrical conductivity and tendency to aggregate during reactions result in structural instability,ultimately hindering further improvement of their electrocatalytic performance.To address these issues,a bamboo-leaf-like FeCoP/MXene heterojunction was synthesized by hydrothermal and thermal treatments,utilizing highly conductive MXene as the substrate.Density functional theory(DFT)calculations and experimental characterization reveal that strong Ti-O-Co/Fe covalent bond are formed between MXene and FeCoP through hybridization of O 2p and Co/Fe 3d orbitals,which enhance the structural stability of the interface and facilitate the effective anchoring of FeCoP on the MXene surface.Consequently,the structural stability and electrical conductivity of the catalyst are improved simultaneously.Additionally,interfacial charge redistribution optimizes the Gibbs free energy of hydrogen adsorption at the Co,Fe,and Ti sites while promoting the adsorption and activation of water molecules.These factors interact synergistically,leading to enhanced bi-functional electrocatalytic performance for both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In a FeCoP/MXene(+‖-)two-electrode system,the catalyst achieves a current density of 10 mA cm^(-2)at a potential of 1.5 V,which is superior to the RuO_(2)(+)‖Pt/C(-)system.The assembled water splitting device exhibits long-term stability for up to 100 h at a current density of 100 mA cm^(-2).Furthermore,an anion exchange membrane water electrolyzer(AEMWE)equipped with FeCoP/MXene as both anode and cathode achieves an industrial-grade current density of 500 mA cm^(-2)at 1.83 V.These results highlight the critical role of interfacial engineering in enhancing the electrocatalytic performance of TMPs for water splitting and provide valuable insights for the design of novel bifunctional TMP catalysts. 展开更多
关键词 ELECTROCATALYST MXene FeCoP HETEROJUNCTION Water splitting
原文传递
A Model of Application System for Man-Machine-Environment System Engineering in Vessels Based on IDEF0 被引量:5
5
作者 ZhenShang Changhua Qiu Shifan Zhu 《Journal of Marine Science and Application》 2011年第3期347-357,共11页
Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating effici... Applying man-machine-environment system engineering(MMESE)in vessels is a method to improve the effectiveness of the interaction between equipment, environment, and humans for the purpose of advancing operating efficiency, performance, safety, and habitability of a vessel and its subsystems. In the following research, the life cycle of vessels was divided into 9 phases, and 15 research subjects were also identified from among these phases. The 15 subjects were systemized, and then the man-machine-environment engineering system application model for vessels was developed using the ICAM definition method 0 (IDEF0), which is a systematical modeling method. This system model bridges the gap between the data and information flow of every two associated subjects with the major basic research methods and approaches included, which brings the formerly relatively independent subjects together as a whole. The application of this systematic model should facilitate the application of man-machine-environment system engineering in vessels, especially at the conceptual and embodiment design phases. The managers and designers can deal with detailed tasks quickly and efficiently while reducing repetitive work. 展开更多
关键词 man-machine-environment system engineering(MMESE) ICAM definition method 0(IEDFO) VESSEL life cycle
在线阅读 下载PDF
Reform and Reconstitution of Core Courses in Mechanical and Electronic Engineering Under the Background of New Engineering
6
作者 Yali Yu Keyi Wang Yong Yang 《Journal of Contemporary Educational Research》 2023年第12期214-219,共6页
With the arrival of the intelligence era of Industry 4.0,social development has shown complex and diversified characteristics,gradually forming an innovation ecological environment constructed by vertical interaction ... With the arrival of the intelligence era of Industry 4.0,social development has shown complex and diversified characteristics,gradually forming an innovation ecological environment constructed by vertical interaction of multi-layer innovation systems and horizontal collaboration of multiple organizations and departments,which has posed extremely challenging requirements for higher engineering education to cultivate engineering talents with comprehensive engineering qualities who can solve complex engineering problems.However,practical engineering problems may involve a complex knowledge chain of interdisciplinary and multi-disciplinary cross-coupling.Therefore,higher engineering education needs to form a new interdisciplinary and multi-disciplinary integrated engineering innovation talent training system.Based on the characteristics of the mechanical and electronic engineering major,we will reshape and reconstruct the core courses of the mechanical and electronic engineering major.Two core courses are formed:Drive and Measurement and Control I and Drive and Measurement and Control II,with information flow and energy flow as the main lines,following up with the comprehensive practical curriculum system based on the unity of knowledge and practice and ability-oriented thinking,supporting teaching objectives,promoting students’individual development,and providing guidelines for relevant curriculum reforms. 展开更多
关键词 New engineering Mechanical and electronic engineering CROSS-COUPLING Major integration
在线阅读 下载PDF
The Construction and Application of MOOCs University Computer Foundation in Application-Oriented University
7
作者 Ying San Hui Gao +1 位作者 Qilong Han Junyu Lin 《国际计算机前沿大会会议论文集》 2017年第2期109-110,共2页
The paper took SPOC teaching in University Computer Foundation for example, discussed how to make online education meet the basic objectives and requirements of traditional teaching, meanwhile fulfilling the potential... The paper took SPOC teaching in University Computer Foundation for example, discussed how to make online education meet the basic objectives and requirements of traditional teaching, meanwhile fulfilling the potential applications of MOOCs to meet the needs of all walks in computer application. Based on the sharing of resources in many application-oriented universities,from the perspective of teaching reform around innovation and entrepreneurship in the era of internet, the paper focused on the exploitation and significance of MOOCs. By discussing the means to develop and build the MOOCs University Computer Foundation, which was based on curriculum sharing, the paper demonstrated the work flow. It underlined that, in the educational circumstances nowadays, it was necessary to introduce and spread MOOCs. At the same time, it elaborated on the problems existing in the construction of MOOCs University Computer Foundation, and proposed some concrete methods on further development of MOOCs to meet the requirements of students in application-oriented universities. 展开更多
关键词 MOOCs INNOVATIVE EDUCATION INDIVIDUAL development CURRICULUM REFORM
在线阅读 下载PDF
Reform of the Comprehensive Practical Course System for Mechanical and Electronic Engineering Majors Under the Background of New Engineering
8
作者 Yali Yu Keyi Wang Yong Yang 《Journal of Contemporary Educational Research》 2024年第2期85-90,共6页
Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technologi... Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technological revolution and industrial transformation to higher education,cultivating top-notch innovative intellectuals with comprehensive engineering qualities,meeting the requirements of being able to solve complex engineering problems rather than just cognitive capabilities,forming two core courses through reconstructing and reshaping the core courses of the major.The core courses include Drive,Measurement,and Control I and Drive,Measurement,and Control II,which highlight the comprehensive framework of mechanical and electronic engineering professional knowledge,continuing the comprehensive practical course system based on the unity of knowledge and practice,following the trend of new engineering,highlighting the practicality of professional innovation,assisting engineering education reform,and promoting high-quality development of new engineering professionals cultivation. 展开更多
关键词 Comprehensive engineering quality Mechanical and Electronic Engineering Practical course system New engineering
在线阅读 下载PDF
Assessment of seismic intensity and seismic performance of buildings in the M7.9 Myanmar earthquake 被引量:3
9
作者 Sun Baitao Yan Jiaqi +2 位作者 Yang Yongqiang Chen Xiangzhao Sun Menghan 《Earthquake Engineering and Engineering Vibration》 2025年第3期641-652,共12页
Dispatched by the Chinese government,a multidisciplinary team of 30 researchers collaborated with a team from Myanmar to conduct a 14-day on-site investigation.The work encompassed seismic intensity assessments,field ... Dispatched by the Chinese government,a multidisciplinary team of 30 researchers collaborated with a team from Myanmar to conduct a 14-day on-site investigation.The work encompassed seismic intensity assessments,field surveys,and loss evaluations.The paper focuses on the intensity distribution and structural damage characteristics of the 2025 M7.9 Myanmar earthquake,yielding the following key findings.(1)The seismogenic fault rupture propagated in a nearly N-S direction,with a surface rupture length of approximately 450 km.The seismic impact zone exhibited an elongated N-S distribution and a shorter E-W span,distributed like a belt around the seismogenic fault.(2)Within the seismic impact zones,existing buildings comprised five primary structural types,with timber(bamboo)structures constituting the largest proportion(≈80%in rural areas,≈50%in urban areas).The relatively low disaster losses and casualties were primarily attributable to the good seismic performance and low damage ratio of timber(bamboo)structures across varying intensity zones.(3)An anomalous zone of intensityⅨwas located at the boundary between intensityⅥandⅦregions in Nay Pyi Taw.Here,ridge topography combined with soft soil layers significantly amplified ground motion,exacerbating structural damage.(4)Directional effects of ground motion were observed,with the structural damage phenomena and peak ground acceleration(PGA)values in the N-S direction exceeding those in the E-W direction.This validates that the maximum PGA distribution of strike-slip fault earthquakes aligns with the fault strike.The research is expected to provide technical support for post-disaster reconstruction planning,site selection,and disaster mitigation strategies in Myanmar. 展开更多
关键词 M7.9 Myanmar earthquake seismic intensity timber(bamboo)structure directional effects of ground motion strike-slip fault
在线阅读 下载PDF
Optimization method of heat transfer architecture for aircraft fuel thermal management systems 被引量:1
10
作者 Jiangtao XU Haotian TAN +3 位作者 Jitao WU Jiayi HAN Sirong SU Hongqing LYU 《Chinese Journal of Aeronautics》 2025年第8期300-312,共13页
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ... Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture. 展开更多
关键词 Fuel thermal management systems Architecture optimization Graph theory Fuel heat sink Fuel distribution
原文传递
Adaptive WVD Cross-Term Removal Method Based on Multidimensional Property Differences 被引量:1
11
作者 Yifei Zou Xiukun Li Ge Yu 《哈尔滨工程大学学报(英文版)》 2025年第4期774-788,共15页
Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent si... Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent signals.In this paper,we analyze the property differences between auto-term and cross-term in the one-dimensional sequence and the two-dimensional plane and approximate entropy and Rényi entropy are employed to describe them,respectively.Based on this information,we propose a new method to achieve adaptive cross-term removal by combining seeded region growing.Compared to other methods,the new method can achieve cross-term removal without decreasing the TF concentration of the auto-term.Simulation and experimental data processing results show that the method is adaptive and is not constrained by the type or distribution of signals.And it performs well in low signal-to-noise ratio environments. 展开更多
关键词 Cross-term removal Multidimensional property Approximate entropy Rényi entropy Seeded region growing
在线阅读 下载PDF
A Review of Ice Deformation and Breaking Under Flexural–Gravity Waves Induced by Moving Loads 被引量:1
12
作者 Baoyu Ni Hang Xiong +3 位作者 Duanfeng Han Lingdong Zeng Linhua Sun Hao Tan 《哈尔滨工程大学学报(英文版)》 2025年第1期35-52,共18页
Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common c... Ice-breaking methods have become increasingly significant with the ongoing development of the polar regions.Among many ice-breaking methods,ice-breaking that utilizes a moving load is unique compared with the common collision or impact methods.A moving load can generate flexural-gravity waves(FGWs),under the influence of which the ice sheet undergoes deformation and may even experience structural damage.Moving loads can be divided into above-ice loads and underwater loads.For the above-ice loads,we discuss the characteristics of the FGWs generated by a moving load acting on a complete ice sheet,an ice sheet with a crack,and an ice sheet with a lead of open water.For underwater loads,we discuss the influence on the ice-breaking characteristics of FGWs of the mode of motion,the geometrical features,and the trajectory of motion of the load.In addition to discussing the status of current research and the technical challenges of ice-breaking by moving loads,this paper also looks ahead to future research prospects and presents some preliminary ideas for consideration. 展开更多
关键词 ICE-BREAKING Moving load Flexural-gravity wave Ice sheet Above-ice load Underwater load
在线阅读 下载PDF
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
13
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Microstructure and wear property of laser cladded WC particles reinforced CoCrFeNiMo composite coatings on Cr 12 MoV steel 被引量:1
14
作者 LIU Xing-yi YANG Xiao +6 位作者 CHEN Zu-bin GUO Chun-huan LI Hai-xin YANG Zhen-lin DONG Tao JIANG Feng-chun QIAO Zhu-hui 《Journal of Central South University》 2025年第1期49-70,共22页
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o... WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness. 展开更多
关键词 laser cladding CoCrFeNiMo coating WC particles MICROSTRUCTURE wear resistance
在线阅读 下载PDF
Systematic experimental investigation on pressure build-up characteristics of water-jet injection into a molten LBE pool 被引量:1
15
作者 Hao-Ran Huang Zi-Jian Deng +1 位作者 Song-Bai Cheng Jia-Yue Chen 《Nuclear Science and Techniques》 2025年第1期161-174,共14页
In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-b... In the scenario of a steam generator tube rupture accident in a lead-cooled fast reactor,secondary circuit subcooled water under high pressure is injected into an ordinary-pressure primary vessel,where a molten lead-based alloy(typically pure lead or lead-bismuth eutectic(LBE))is used as the coolant.To clarify the pressure build-up characteristics under water-jet injection,this study conducted several experiments by injecting pressurized water into a molten LBE pool at Sun Yat-sen University.To obtain a further understanding,several new experimental parameters were adopted,including the melt temperature,water subcooling,injection pressure,injection duration,and nozzle diameter.Through detailed analyses,it was found that the pressure and temperature during the water-melt interaction exhibited a consistent variation trend with our previous water-droplet injection mode LBE experiment.Similarly,the existence of a steam explosion was confirmed,which typically results in a much stronger pressure build-up.For the non-explosion cases,increasing the injection pressure,melt-pool temperature,nozzle diameter,and water subcooling promoted pressure build-up in the melt pool.However,a limited enhancement effect was observed when increasing the injection duration,which may be owing to the continually rising pressure in the interaction vessel or the isolation effect of the generated steam cavity.Regardless of whether a steam explosion occurred,the calculated mechanical and kinetic energy conversion efficiencies of the melt were relatively small(not exceeding 4.1%and 0.7%,respectively).Moreover,the range of the conversion efficiency was similar to that of previous water-droplet experiments,although the upper limit of the jet mode was slightly lower. 展开更多
关键词 Lead-cooled fast reactor Steam generator tube rupture accident Pressure build-up characteristics Experimental study Pressure water-jet injection
在线阅读 下载PDF
Direct regeneration of spent LiFePO_(4)cathode material via a simple solid-phase method 被引量:1
16
作者 Hao Sun Xiaoxue Li +5 位作者 Baoyu Wu Kai Zhu Yinyi Gao Tianzeng Bao Hongbin Wu Dianxue Cao 《Chinese Chemical Letters》 2025年第6期745-751,共7页
For realizing the goals of“carbon peak”and“carbon neutrality”,lithium-ion batteries(LIB)with LiFePO_(4)as the cathode material have been widely applied.However,this has also led to a large number of spent lithium-... For realizing the goals of“carbon peak”and“carbon neutrality”,lithium-ion batteries(LIB)with LiFePO_(4)as the cathode material have been widely applied.However,this has also led to a large number of spent lithium-ion batteries,and the safe disposal of spent lithium-ion batteries is an urgent issue.Currently,the main reason for the capacity decay of LiFePO_(4)materials is the Li deficiency and the formation of the Fe^(3+)phase.In order to address this issue,we performed high-temperature calcination of the discarded lithium iron phosphate cathode material in a carbon dioxide environment to reduce or partially remove the carbon coating on its surface.Subsequently,mechanical grinding was conducted to ensure thorough mixing of the lithium source with the discarded lithium iron phosphate.The reaction between CO_(2)and the carbon coating produced a reducing atmosphere,reducing Fe^(3+)to Fe^(2+)and thereby reducing the content of Fe^(3+).The Fe^(3+)content in the repaired LiFePO_(4)material is reduced.The crystal structure of spent LiFePO_(4)cathode materials was repaired more completely compare with the traditional pretreatment method,and the repaired LiFePO_(4)material shows good electrochemical performance and cycling stability.Under 0.1 C conditions,the initial capacity can reach 149.1 m Ah/g.It can be reintroduced for commercial use. 展开更多
关键词 Spent LiFePO_(4) Carbon dioxide Carbon coating Lithium-iron antiphase defects Direct regeneration
原文传递
Achieving ultrahigh strength and ductility via high-density nanoprecipitates triggering multiple deformation mechanisms in a dual-aging high-entropy alloy with precold deformation 被引量:1
17
作者 Liyuan Liu Yang Zhang Zhongwu Zhang 《Journal of Materials Science & Technology》 2025年第2期27-41,共15页
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will... How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity. 展开更多
关键词 High-entropy alloy Precold deformation Precipitation behavior Ultrahigh strength Deformation mechanism
原文传递
Research on Multi-Level Automatic Filling Optimization Design Method for Layered Cross-Sectional Layout of Umbilical 被引量:1
18
作者 YIN Xu FAN Zhi-rui +4 位作者 CAO Dong-hui LIU Yu-jie LI Meng-shu YAN Jun YANG Zhi-xun 《China Ocean Engineering》 2025年第5期891-903,共13页
The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly comple... The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly complex layout combinations.Furthermore,due to constraints in component quantity and geometry within the cross-sectional layout,filler bodies must be incorporated to maintain cross-section performance.Conventional design approaches based on manual experience suffer from inefficiency,high variability,and difficulties in quantification.This paper presents a multi-level automatic filling optimization design method for umbilical cross-sectional layouts to address these limitations.Initially,the research establishes a multi-objective optimization model that considers compactness,balance,and wear resistance of the cross-section,employing an enhanced genetic algorithm to achieve a near-optimal layout.Subsequently,the study implements an image processing-based vacancy detection technique to accurately identify cross-sectional gaps.To manage the variability and diversity of these vacant regions,the research introduces a multi-level filling method that strategically selects and places filler bodies of varying dimensions,overcoming the constraints of uniform-size fillers.Additionally,the method incorporates a hierarchical strategy that subdivides the complex cross-section into multiple layers,enabling layer-by-layer optimization and filling.This approach reduces manufac-turing equipment requirements while ensuring practical production process feasibility.The methodology is validated through a specific umbilical case study.The results demonstrate improvements in compactness,balance,and wear resistance compared with the initial cross-section,offering novel insights and valuable references for filler design in umbilical cross-sections. 展开更多
关键词 UMBILICAL cross-sectional layout multi-level filling layered layout optimization design
在线阅读 下载PDF
Study on the Carcass Layer Multi-Pass Roll Forming of Deepwater Flexible Risers 被引量:1
19
作者 LU Hai-long LI Wen-bo +2 位作者 YAN Jun ZHANG Heng-rui YANG Zhi-xun 《China Ocean Engineering》 2025年第5期866-877,共12页
The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a... The carcass layer is the innermost structure of flexible marine risers and is responsible for resisting external pressure.It has an“S”section with a spiral interlocking feature.After the multi-pass roll forming of a flat steel strip,a carcass layer is formed by lock forming.During roll forming,the steel strip undergoes significant plastic deformation,and its local area accumulates residual stress owing to multiple loading and unloading cycles.These phenomena complicate the design and analysis of the carcass layer multi-pass roll forming(CLMRF)process and cause issues in the carcass layer during manufacturing,such as strip fracture and low forming quality.Thus,herein,CLMRF was investigated to clarify the stress distribution,and a parameter analysis was performed.First,the CLMRF process was designed on the basis of classical roll-forming design theory.Second,a finite element model was established,and CLMRF was simulated.Third,the distributions of the forming stress and residual stress of the strip during CLMRF were investigated.Finally,the influences of the strip thickness,roll gap,roll distance,and angular increment were investigated.The conclusions of this study can be used to provide technical guidance in the manufacturing of flexible risers. 展开更多
关键词 flexible riser carcass layer multi-pass roll forming finite element analysis residual stress
在线阅读 下载PDF
Investigation on Fatigue Damage of Offshore Risers Due to Slug-Induced Vibrations Based on Arbitrary Lagrangian-Eulerian(ALE)-Absolute Nodal Coordinate Formulation(ANCF) 被引量:1
20
作者 LIU De-peng ZHANG Yu AI Shang-mao 《China Ocean Engineering》 2025年第5期941-955,共15页
This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the A... This study examines the slug-induced vibration(SIV)response and fatigue behavior of offshore risers subjected to internal slug flow.A structural model incorporating internal slug flow dynamics is developed using the Absolute Nodal Coordinate Formulation(ANCF)and a spatial-temporal density variation equation to analyze how slug flow parameters affect the SIV response of risers.Structural displacement,stress,and fatigue responses are systematically evaluated to characterize the structural behavior under SIV conditions.Longer slugs induce more pronounced traveling wave characteristics,while shorter slugs facilitate a mixed traveling-standing wave mode.Moreover,higher slug frequencies lead to increased fatigue accumulation,especially over an extended touchdown zone,thereby compromising the structural integrity of the riser.The findings yield valuable insights into the dynamic interactions between slug flow and riser response.This research advances the understanding of SIV mechanisms and provides a theoretical foundation for fatigue assessment and structural optimization,contributing to the safe and efficient design of offshore risers in deepwater environments. 展开更多
关键词 slug flow offshore riser fatigue damage dynamic analysis
在线阅读 下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部