期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hybrid CNN Architecture for Hot Spot Detection in Photovoltaic Panels Using Fast R-CNN and GoogleNet
1
作者 Carlos Quiterio Gómez Muñoz Fausto Pedro García Márquez Jorge Bernabé Sanjuán 《Computer Modeling in Engineering & Sciences》 2025年第9期3369-3386,共18页
Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic instal... Due to the continuous increase in global energy demand,photovoltaic solar energy generation and associated maintenance requirements have significantly expanded.One critical maintenance challenge in photovoltaic installations is detecting hot spots,localized overheating defects in solar cells that drastically reduce efficiency and can lead to permanent damage.Traditional methods for detecting these defects rely on manual inspections using thermal imaging,which are costly,labor-intensive,and impractical for large-scale installations.This research introduces an automated hybrid system based on two specialized convolutional neural networks deployed in a cascaded architecture.The first convolutional neural network efficiently detects and isolates individual solar panels from high-resolution aerial thermal images captured by drones.Subsequently,a second,more advanced convolutional neural network accurately classifies each isolated panel as either defective or healthy,effectively distinguishing genuine thermal anomalies from false positives caused by reflections or glare.Experimental validation on a real-world dataset comprising thousands of thermal images yielded exceptional accuracy,significantly reducing inspection time,costs,and the likelihood of false defect detections.This proposed system enhances the reliability and efficiency of photovoltaic plant inspections,thus contributing to improved operational performance and economic viability. 展开更多
关键词 Photovoltaic panel convolutional neural network deep learning hot spots thermal imaging unmanned aerial vehicle inspection GoogleNet fast regions with convolutional neural networks automated defect detection transfer learning aerial thermography
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部