期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Distributed Computing Framework Based on Lightweight Variance Reduction Method to Accelerate Machine Learning Training on Blockchain 被引量:1
1
作者 Zhen Huang Feng Liu +2 位作者 Mingxing Tang Jinyan Qiu Yuxing Peng 《China Communications》 SCIE CSCD 2020年第9期77-89,共13页
To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the ... To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode. 展开更多
关键词 machine learning optimization algorithm blockchain distributed computing variance reduction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部