To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the ...To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.展开更多
基金partly supported by National Key Basic Research Program of China(2016YFB1000100)partly supported by National Natural Science Foundation of China(NO.61402490)。
文摘To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.