Objective: Tumor heterogeneity renders identification of suitable biomarkers of gastric cancer(GC)challenging. Here, we aimed to identify prognostic genes of GC using computational analysis.Methods: We first used micr...Objective: Tumor heterogeneity renders identification of suitable biomarkers of gastric cancer(GC)challenging. Here, we aimed to identify prognostic genes of GC using computational analysis.Methods: We first used microarray technology to profile gene expression of GC and paired nontumor tissues from 198 patients. Based on these profiles and patients’ clinical information, we next identified prognostic genes using novel computational approaches. Phosphoglucose isomerase, also known as glucose-6-phosphate isomerase(GPI), which ranked first among 27 candidate genes, was further investigated by a new analytical tool namely enviro-geno-pheno-state(E-GPS) analysis. Suitability of GPI as a prognostic marker, and its relationship with physiological processes such as metabolism, epithelial-mesenchymal transition(EMT), as well as drug sensitivity were evaluated using both our own and independent public datasets.Results: We found that higher expression of GPI in GC correlated with prolonged survival of patients.Particularly, a combination of CDH2 and GPI expression effectively stratified the outcomes of patients with TNM stage Ⅱ/Ⅲ. Down-regulation of GPI in tumor tissues correlated well with depressed glucose metabolism and fatty acid synthesis, as well as enhanced fatty acid oxidation and creatine metabolism, indicating that GPI represents a suitable marker for increased probability of EMT in GC cells.Conclusions: Our findings strongly suggest that GPI acts as a novel biomarker candidate for GC prognosis,allowing greatly enhanced clinical management of GC patients. The potential metabolic rewiring correlated with GPI also provides new insights into studying the relationship between cancer metabolism and patient survival.展开更多
Small proteins specifically refer to proteins consisting of less than 100 amino acids translated from small open reading frames(s ORFs),which were usually missed in previous genome annotation.The significance of small...Small proteins specifically refer to proteins consisting of less than 100 amino acids translated from small open reading frames(s ORFs),which were usually missed in previous genome annotation.The significance of small proteins has been revealed in current years,along with the discovery of their diverse functions.However,systematic annotation of small proteins is still insufficient.Sm Prot was specially developed to provide valuable information on small proteins for scientific community.Here we present the update of Sm Prot,which emphasizes reliability of translated s ORFs,genetic variants in translated s ORFs,disease-specific s ORF translation events or sequences,and remarkably increased data volume.More components such as non-ATG translation initiation,function,and new sources are also included.Sm Prot incorporated638,958 unique small proteins curated from 3,165,229 primary records,which were computationally predicted from 419 ribosome profiling(Ribo-seq)datasets or collected from literature and other sources from 370 cell lines or tissues in 8 species(Homo sapiens,Mus musculus,Rattus norvegicus,Drosophila melanogaster,Danio rerio,Saccharomyces cerevisiae,Caenorhabditis elegans,and Escherichia coli).In addition,small protein families identified from human microbiomes were also collected.All datasets in Sm Prot are free to access,and available for browse,search,and bulk downloads at http://bigdata.ibp.ac.cn/SmProt/.展开更多
regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP- 43), a RNAJDNA binding protein associated with neu- rodegeneration, is ...regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP- 43), a RNAJDNA binding protein associated with neu- rodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP- 43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of dif- ferent isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP- 43 in miRNA processing. A number of TDP-43 associ- ated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulat- ing miR-423-3p. In contrast, TDP-43 increases miR-500a- 3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients,suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a- 3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.展开更多
基金supported by grants from the Ministry of Science and Technology of the People’s Republic of China (No. SS2014AA020603)Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (No. ZYLX201701)+3 种基金Beijing Municipal Science and Technology Commission (No. D1311 00005313010)the National Natural Science Foundation of China (No. 31520103905)the National High Technology Research and Development Program (“863” Program) of China (No. 2015AA020108)the Zhi-Yuan chair professorship start-up grant WF220103010 from Shanghai Jiao Tong University
文摘Objective: Tumor heterogeneity renders identification of suitable biomarkers of gastric cancer(GC)challenging. Here, we aimed to identify prognostic genes of GC using computational analysis.Methods: We first used microarray technology to profile gene expression of GC and paired nontumor tissues from 198 patients. Based on these profiles and patients’ clinical information, we next identified prognostic genes using novel computational approaches. Phosphoglucose isomerase, also known as glucose-6-phosphate isomerase(GPI), which ranked first among 27 candidate genes, was further investigated by a new analytical tool namely enviro-geno-pheno-state(E-GPS) analysis. Suitability of GPI as a prognostic marker, and its relationship with physiological processes such as metabolism, epithelial-mesenchymal transition(EMT), as well as drug sensitivity were evaluated using both our own and independent public datasets.Results: We found that higher expression of GPI in GC correlated with prolonged survival of patients.Particularly, a combination of CDH2 and GPI expression effectively stratified the outcomes of patients with TNM stage Ⅱ/Ⅲ. Down-regulation of GPI in tumor tissues correlated well with depressed glucose metabolism and fatty acid synthesis, as well as enhanced fatty acid oxidation and creatine metabolism, indicating that GPI represents a suitable marker for increased probability of EMT in GC cells.Conclusions: Our findings strongly suggest that GPI acts as a novel biomarker candidate for GC prognosis,allowing greatly enhanced clinical management of GC patients. The potential metabolic rewiring correlated with GPI also provides new insights into studying the relationship between cancer metabolism and patient survival.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0901702)National Natural Science Foundation of China(Grant Nos.81902519,91940306,31871294,31701117,and 31970647)+4 种基金the National Key R&D Program of China(Grant Nos.2017YFC0907503,2016YFC0901002,and 2018YFA0106901)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB38040300)the 13th Five-year Informatization Plan of Chinese Academy of Sciences(Grant No.XXH13505-05)Special Investigation on Science and Technology Basic Resources,Ministry of Science and Technology,China(Grant No.2019FY100102)the National Genomics Data Center,China。
文摘Small proteins specifically refer to proteins consisting of less than 100 amino acids translated from small open reading frames(s ORFs),which were usually missed in previous genome annotation.The significance of small proteins has been revealed in current years,along with the discovery of their diverse functions.However,systematic annotation of small proteins is still insufficient.Sm Prot was specially developed to provide valuable information on small proteins for scientific community.Here we present the update of Sm Prot,which emphasizes reliability of translated s ORFs,genetic variants in translated s ORFs,disease-specific s ORF translation events or sequences,and remarkably increased data volume.More components such as non-ATG translation initiation,function,and new sources are also included.Sm Prot incorporated638,958 unique small proteins curated from 3,165,229 primary records,which were computationally predicted from 419 ribosome profiling(Ribo-seq)datasets or collected from literature and other sources from 370 cell lines or tissues in 8 species(Homo sapiens,Mus musculus,Rattus norvegicus,Drosophila melanogaster,Danio rerio,Saccharomyces cerevisiae,Caenorhabditis elegans,and Escherichia coli).In addition,small protein families identified from human microbiomes were also collected.All datasets in Sm Prot are free to access,and available for browse,search,and bulk downloads at http://bigdata.ibp.ac.cn/SmProt/.
基金We thank Geir SkogerbФ for careful reading of the manuscript and valuable suggestions. This work was supported by National Natural Science Foundation of China (Grant Nos. 31520103905 and 31701122) and National High Technology Research and Development Program ("863" Program)of China (2014AA021502), MC, LZ, JL are supported by grants from the the National Basic Research Program (973 Program) (No. 2013CB917803) and the National Natural Science Foundation of China (Grant No, 91132710). RK issupported by National Natural Science Foundation of China (Grant No. 31501133). WM is supported by NIH (F30 NS090893). JYW is supported by NIH (R01CA175360).
文摘regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP- 43), a RNAJDNA binding protein associated with neu- rodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP- 43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of dif- ferent isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP- 43 in miRNA processing. A number of TDP-43 associ- ated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulat- ing miR-423-3p. In contrast, TDP-43 increases miR-500a- 3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients,suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a- 3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.