After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
Photovoltaic(PV)power generation is undergoing significant growth and serves as a key driver of the global energy transition.However,its intermittent nature,which fluctuates with weather conditions,has raised concerns...Photovoltaic(PV)power generation is undergoing significant growth and serves as a key driver of the global energy transition.However,its intermittent nature,which fluctuates with weather conditions,has raised concerns about grid stability.Accurate PV power prediction has been demonstrated as crucial for power system operation and scheduling,enabling power slope control,fluctuation mitigation,grid stability enhancement,and reliable data support for secure grid operation.However,existing prediction models primarily target centralized PV plants,largely neglecting the spatiotemporal coupling dynamics and output uncertainties inherent to distributed PV systems.This study proposes a novel Spatio-Temporal Graph Neural Network(STGNN)architecture for distributed PV power generation prediction,designed to enhance distributed photovoltaic(PV)power generation forecasting accuracy and support regional grid scheduling.This approach models each PV power plant as a node in an undirected graph,with edges representing correlations between plants to capture spatial dependencies.The model comprises multiple Sparse Attention-based Adaptive Spatio-Temporal(SAAST)blocks.The SAAST blocks include sparse temporal attention,sparse spatial attention,an adaptive Graph Convolutional Network(GCN),and a temporal convolution network(TCN).These components eliminate weak temporal and spatial correlations,better represent dynamic spatial dependencies,and further enhance prediction accuracy.Finally,multi-dimensional comparative experiments between the STGNN and other models on the DKASC PV dataset demonstrate its superior performance in terms of accuracy and goodness-of-fit for distributed PV power generation prediction.展开更多
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
基金supported by the State Grid Corporation of China Headquarters Science and Technology Project“Research on Key Technologies for Power System Source-Load Forecasting and Regulation Capacity Assessment Oriented towards Major Weather Processes”(4000-202355381A-2-3-XG).
文摘Photovoltaic(PV)power generation is undergoing significant growth and serves as a key driver of the global energy transition.However,its intermittent nature,which fluctuates with weather conditions,has raised concerns about grid stability.Accurate PV power prediction has been demonstrated as crucial for power system operation and scheduling,enabling power slope control,fluctuation mitigation,grid stability enhancement,and reliable data support for secure grid operation.However,existing prediction models primarily target centralized PV plants,largely neglecting the spatiotemporal coupling dynamics and output uncertainties inherent to distributed PV systems.This study proposes a novel Spatio-Temporal Graph Neural Network(STGNN)architecture for distributed PV power generation prediction,designed to enhance distributed photovoltaic(PV)power generation forecasting accuracy and support regional grid scheduling.This approach models each PV power plant as a node in an undirected graph,with edges representing correlations between plants to capture spatial dependencies.The model comprises multiple Sparse Attention-based Adaptive Spatio-Temporal(SAAST)blocks.The SAAST blocks include sparse temporal attention,sparse spatial attention,an adaptive Graph Convolutional Network(GCN),and a temporal convolution network(TCN).These components eliminate weak temporal and spatial correlations,better represent dynamic spatial dependencies,and further enhance prediction accuracy.Finally,multi-dimensional comparative experiments between the STGNN and other models on the DKASC PV dataset demonstrate its superior performance in terms of accuracy and goodness-of-fit for distributed PV power generation prediction.