期刊文献+
共找到9,989篇文章
< 1 2 250 >
每页显示 20 50 100
Reasonable dry cultivation methods can balance the yield and grain quality of rice 被引量:1
1
作者 Jia Wu Luqi Zhang +4 位作者 Ziyi Wang Fan Ge Hao Zhang Jianchang Yang Yajie Zhang 《Journal of Integrative Agriculture》 2025年第3期1030-1043,共14页
Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while bala... Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods:plastic film mulching dry cultivation(PFMC),bare dry cultivation(BC),and continuous flooding cultivation(CF)as control.There was no significant difference in upland rice yield between PFMC and BC,nor in paddy rice yield between PFMC and CF.Compared with CF,the two varieties'yields decreased significantly with BC.Dry cultivation,especially PFMC,could decrease the active filling period,chalky rice rate,chalkiness,amylose content,gel consistency,breakdown viscosity,the ratio of glutelin to prolamin,and leaf senescence while increasing water use efficiency,protein components content,setback viscosity,grain starch branching enzyme(Q-enzyme)activity,and average filling rate.Compared with paddy rice,upland rice had a lower yield,shorter active filling period,lower chalkiness grain rate and gel consistency,higher amylose content,breakdown viscosity,protein components content,and average filling rate.Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.Reasonable dry cultivation methods could balance yield and quality,especially by improving rice's nutritional and appearance quality. 展开更多
关键词 RICE dry cultivation grain quality YIELD protein components grain filling
在线阅读 下载PDF
Antifungal activity and potential mechanism of paeonol against Fusarium graminearum and the application on wheat grains and steamed bread
2
作者 Yiming Zhang Hongying Xiao +2 位作者 Roland Ernest Poms Qian Li Renyong Zhao 《Grain & Oil Science and Technology》 2025年第2期109-117,共9页
Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration ... Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration of 0.3125 mg/mL,paeonol was adequate to fully inhibit the growth of F.graminearum mycelia within 3 days.Fourier-Transform Infrared Spectroscopy(FT-IR)analysis showed that paeonol had no impact on the outer surface of F.graminearum cell walls.While propidium iodide staining,extracellular conductivity,and pH value measurements demonstrated that paeonol disrupted the cell membrane.Furthermore,lipid oxidation and osmotic stress responses were observed in F.graminearum treated with paeonol,resulting in a 47.23%rise in malondialdehyde(MDA)levels and a 515.43%increase in glycerol levels.Moreover,on the 7th day after exposure to paeonol treatment,the deoxynivalenol(DON)level was significantly reduced,measuring only onefifth of that in the control group.Finally,paeonol was shown to inhibit F.graminearum on wheat grains and steamed bread slices.These results,for the first time,revealed the inhibitory mode of action of paeonol against F.graminearum as reflected by disruption of cell membrane integrity,induction of lipid oxidation and osmotic pressure,as well as DON biosynthesis.Furthermore,this study provided scientific evidence for the potential applications of paeonol in agriculture and food industry. 展开更多
关键词 PAEONOL Fusarium graminearum Antifungal mechanism Wheat grains Steamed bread slices
在线阅读 下载PDF
Variation in the promoter of OsNPF7.1 contributes to nitrate uptake,remobilization,and grain yield in upland rice
3
作者 Ming Yan Huimin Feng +13 位作者 Mian Gu Hanwei Mei Lei Wang Kai Xu Shoujun Chen Anning Zhang Liguo Zhou Xiaoyan Xu Peiqing Fan Liang Chen Fangjun Feng Guohua Xu Lijun Luo Hui Xia 《Journal of Genetics and Genomics》 2025年第7期954-957,共4页
Asian cultivated rice is one of the most important cereal crops globally,feeding approximately 50%of the world's population.Increasing rice nitrogen use efficiency(NUE)is crucial for achieving high yields with low... Asian cultivated rice is one of the most important cereal crops globally,feeding approximately 50%of the world's population.Increasing rice nitrogen use efficiency(NUE)is crucial for achieving high yields with low nitrogen inputs(Xu et al.,2012;Hu et al.,2023).However,modern cultivars are typically bred for high yields through excessive nitrogen fertilizer use,leading to the loss of beneficial alleles associated with high NUE during the breeding process(Wang and Peng,2017;Hu et al.,2023).Genetic improvement for high NUE should be a key strategy in breeding“Green Super Rice”(GSR)(Yu et al.,2021)and water-saving and drought-resistance rice(WDR)(Luo,2010;Xia et al.,2022)for sustainable agriculture.Asian cultivated rice is highly diverse and harbors vital genetic variants essential for adaptation to different environments(Wing et al.,2018). 展开更多
关键词 nitrate uptake osnpf grain yield nitrogen use efficiency upland rice promoter variation breeding process wang Asian cultivated rice
原文传递
Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling
4
作者 Liulong Li Zhiqiang Mao +5 位作者 Pei Wang Jian Cai Qin Zhou Yingxin Zhong Dong Jiang Xiao Wang 《Journal of Integrative Agriculture》 2025年第8期2888-2901,共14页
The impacts of drought stress on crop yield and quality are substantial. Drought priming during the early growth stage of plants has been shown to improve tolerance to drought stress during the reproductive stage, alt... The impacts of drought stress on crop yield and quality are substantial. Drought priming during the early growth stage of plants has been shown to improve tolerance to drought stress during the reproductive stage, although its effects on grain quality remain elusive. This study investigated the influence of drought priming on starch and protein levels in grains under drought stress during grain filling. Our results revealed that drought stress leads to a reduction in the contents of starch and its constituents, while simultaneously increasing glutenin macropolymers and protein fractions. Notably, drought primed plants under drought stress(PD) exhibited mitigated declines in the contents of starch and its components, leading to improvements in starch swelling power and pasting properties. In addition, PD resulted in a slight increase in the protein fractions, limiting the overall rise in total protein content compared to drought stress alone. The results of our study underscore the efficacy of drought priming as a strategy to counteract the negative effects of drought stress on grain quality, particularly by minimizing starch losses and restraining protein content elevation. 展开更多
关键词 wheat drought priming STARCH protein quality amino acid
在线阅读 下载PDF
Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage 被引量:7
5
作者 JI Dongling XIAO Wenhui +8 位作者 SUN Zhiwei LIU Lijun GU Junfei ZHANG Hao Matthew Tom HARRISON LIU Ke WANG Zhiqin WANG Weilu YANG Jianchang 《Rice science》 SCIE CSCD 2023年第6期598-612,共15页
Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for... Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for rice yield and grain quality. To assess the impact of high temperature stress(HTS) at the early panicle initiation(EPI) stage on the accumulation, transportation, and distribution of dry matter and nitrogen substances in various organs of rice, as well as the resulting effects on rice yield and grain quality, pot experiments were conducted using an indica rice cultivar Yangdao 6(YD6) and a japonica rice cultivar Jinxiangyu 1(JXY1) under both normal temperature(32 ℃/26 ℃) and high temperature(38 ℃/29 ℃) conditions. The results indicated that exposure to HTS at the EPI stage significantly decreased rice yield by reducing spikelet number per panicle, grain-filling rate, and grain weight. However, it improved the nutritional quality of rice grains by increasing protein and amylose contents. The reduction in nitrogen and dry matter accumulation accounted for the changes in spikelet number per panicle, grain-filling rate, and grain size. Under HTS, the decrease in nitrogen accumulation accompanied by the reduction in dry matter may be due to the down-regulation of leaf net photosynthesis and senescence, as evidenced by the decrease in nitrogen content. Furthermore, the decrease in sink size limited the translocation of dry matter and nitrogen substances to grains, which was closely related to the reduction in grain weight and the deterioration of grain quality. These findings significantly contribute to our understanding of the mechanisms of HTS on grain yield and quality formation from the perspective of dry matter and nitrogen accumulation and translocation. Further efforts are needed to improve the adaptability of rice varieties to climate change in the near future. 展开更多
关键词 rice early panicle initiation stage high temperature stress carbon-nitrogen translocation grain yield grain quality
在线阅读 下载PDF
Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality 被引量:7
6
作者 WEI Huan-he GE Jia-lin +6 位作者 ZHANG Xu-bin ZHU Wang DENG Fei REN Wan-jun CHEN Ying-long MENG Tian-yao DAI Qi-gen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第7期2041-2053,共13页
Light deficiency is a growing abiotic stress in rice production.However,few studies focus on shading effects on grain yield and quality of rice in East China.It is also essential to investigate proper nitrogen(N)appli... Light deficiency is a growing abiotic stress in rice production.However,few studies focus on shading effects on grain yield and quality of rice in East China.It is also essential to investigate proper nitrogen(N)application strategies that can effectively alleviate the negative impacts of light deficiency on grain yield and quality in rice.A two-year field experiment was conducted to explore the effects of shading(non-shading and shading from heading to maturity)and panicle N application(NDP,decreased panicle N rate;NMP,medium panicle N rate;NIP,increased panicle N rate)treatments on rice yield-and quality-related characteristics.Compared with non-shading,shading resulted in a 9.5-14.8%yield loss(P<0.05),mainly due to lower filled-grain percentage and grain weight.NMP and NIP had higher(P<0.05)grain yield than NDP under non-shading,and no significant difference was observed in rice grain yield among NDP,NMP,and NIP under shading.Compared with NMP and NIP,NDP achieved less yield loss under shading because of the increased filled-grain percentage and grain weight.Shading reduced leaf photosynthetic rate after heading,as well as shoot biomass weight at maturity,shoot biomass accumulation from heading to maturity,and nonstructural carbohydrate(NSC)content in the stem at maturity(P<0.05).The harvest index and NSC remobilization reserve of NDP were increased under shading.Shading decreased(P<0.05)percentages of brown rice,milled rice,head rice,and amylose content while increasing(P<0.05)chalky rice percentage,chalky area,chalky degree,and grain protein.NMP demonstrated a better milling quality under non-shading,while NDP demonstrated under shading.NDP exhibited both lower chalky rice percentage,chalky area,and chalky degree under non-shading and shading,compared with NMP and NIP.NDP under shading decreased amylose content and breakdown but increased grain protein content and setback,contributing to similar overall palatability to non-shading.Our results suggested severe grain yield and quality penalty of rice when subjected to shading after heading.NDP improved NSC remobilization,harvest index,and sink-filling efficiency and alleviated yield loss under shading.Besides,NDP would maintain rice’s milling,appearance,and cooking and eating qualities under shading.Proper N management with a decreased panicle N rate could be adopted to mitigate the negative effects of shading on rice grain yield and quality. 展开更多
关键词 rice grain yield grain quality SHADING panicle N application
在线阅读 下载PDF
Two ABCI family transporters,OsABCI15 and OsABCI16,are involved in grain-filling in rice 被引量:2
7
作者 Bin Ma Xiubiao Cao +8 位作者 Xiaoyuan Li Zhong Bian Qi-Qi Zhang Zijun Fang Jiyun Liu Qun Li Qiaoquan Liu Lin Zhang Zuhua He 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2024年第5期492-506,共15页
Seed development is critical for plant reproduction and crop yield,with panicle seed-setting rate,grain-filling,and grain weight being key seed characteristics for yield improvement.However,few genes are known to regu... Seed development is critical for plant reproduction and crop yield,with panicle seed-setting rate,grain-filling,and grain weight being key seed characteristics for yield improvement.However,few genes are known to regulate grain filling.Here,we identify two adenosine triphosphate(ATP)-binding cassette(ABC)I-type transporter genes,OsABCI15 and OsABCI16,involved in rice grain-filling.Both genes are highly expressed in developing seeds,and their proteins are localized to the plasma membrane and cytosol.Interestingly,knockout of OsABCI15 and OsABCI16 results in a significant reduction in seed-setting rate,caused predominantly by the severe empty pericarp phenotype,which differs from the previously reported low seed-setting phenotype resulting from failed pollination.Further analysis indicates that OsABCI15 and OsABCI16 participate in ion homeostasis and likely export ions between filial tissues and maternal tissues during grain filling.Importantly,overexpression of OsABCI15 and OsABCI16 enhances the seed-setting rate and grain yield in transgenic plants and decreases ion accumulation in brown rice.Moreover,the OsABCI15/16 orthologues in maize exhibit a similar role in kernel development,as demonstrated by their disruption in transgenic maize.Therefore,ourfindings reveal the important roles of two ABC transporters in cereal grain filling,highlighting their value in crop yield improvement. 展开更多
关键词 ABC transporters RICE Grain filling Ion homeostasis Grain yield
原文传递
Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s 被引量:37
8
作者 Junfei Gu Jing Chen +3 位作者 Lu Chen Zhiqin Wang Hao Zhang Jianchang Yang 《The Crop Journal》 SCIE CAS CSCD 2015年第4期285-297,共13页
While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of... While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of breeding and N levels on rice quality 12 japonica rice cultivars bred in the past60 years in the Yangtze River Basin were used with three levels of N: 0 kg N ha-1, 240 kg N ha-1,and 360 kg N ha-1. During the period, milling quality(brown rice percentage, milled rice percentage, and head rice percentage), appearance quality(chalky kernels percentage, chalky size, and chalkiness), and eating and cooking quality(amylose content, gel consistency, peak viscosity, breakdown, and setback) were significantly improved, but the nutritive value of the grain has declined due to a reduction in protein content. Micronutrients, such as Cu, Mg, and S contents, were decreased, and Fe, Mn, Zn, Na, Ca, K, P, B contents were increased. These changes in grain quality imply that simultaneous improvements in grain yield and grain quality are possible through selection. Overall, application of N fertilizer decreased grain quality, especially in terms of eating and cooking quality. Under higher N levels, higher protein content was the main reason for deterioration of grain quality, although lower amylose content might contribute to improving starch pasting properties. These results suggest that further improvement in grain quality will depend on both breeding and cultivation practices, especially in regard to nitrogen and water management. 展开更多
关键词 Breeding Cultivation technique Grain quality JAPONICA rice Nitrogenous FERTILIZER
在线阅读 下载PDF
Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice 被引量:34
9
作者 HU Qun JIANG Wei-qin +7 位作者 QIU Shi XING Zhi-peng HU Ya-jie GUO Bao-wei LIU Guo-dong GAO Hui ZHANG Hong-cheng WEI Hai-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第5期1197-1214,共18页
Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting. However, the initial pot-seedling transplanting machi... Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting. However, the initial pot-seedling transplanting machine lacked optimized density spacing and limited yield potential for japonica rice. Therefore, ascertaining the optimized density by wide-narrow rows and the appropriate transplanting method for yield formation and grain quality of japonica rice is of great importance for high-quality rice production. Field experiments were conducted using two japonica rice cultivars Nanjing 9108 and Nanjing 5055 under three transplanting methods in 2016 and 2017: mechanical pot-seedling transplanting with wide-narrow row(K, average row spacing of 30 cm);equidistant row(D, 33 cm×12 cm);and mechanical carpet-seedling transplanting(T, 30 cm×12.4 cm). In addition, five different density treatments were set in K(K1–K5, from 18.62×10~4 to 28.49×10~4 hills ha^(–1)). The results showed that the highest yield was produced by a planting density of 26.88×104 hills ha^(–1) in mechanical pot-seedling transplanting with wide-narrow row with a greater number of total spikelets that resulted from significantly more panicles per area and slightly more grain number per panicle, as compared with equidistant row, and yield among density in wide-narrow row showed a parabolic trend. Compared with mechanical carpet-seedling transplanting, the treatment of the highest yield increased yield significantly, which was mainly attributed to the larger sink size with improved filled-grain percentage and grain weight, higher harvest index, and increased total dry matter accumulation, especially the larger amount accumulated from heading stage to maturity stage. With the density in wide-narrow row decreasing, processing quality, appearance quality, and nutrition quality were all improved, whereas amylose content and the taste value were decreased. Compared with mechanical carpet-seedling transplanting, mechanical pot-seedling transplanting improved processing quality and nutrition quality, but decreased amylose content and deteriorated appearance quality. These results suggested that mechanical pot-seedling transplanting with wide-narrow row coupling produced a suitable planting density of 26.88×10~4 hills ha^(–1) and may be an alternative approach to improving grain yield and quality for japonica rice. 展开更多
关键词 density grain quality JAPONICA rice TRANSPLANTING methods wide-narrow ROW yield formation
在线阅读 下载PDF
Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice 被引量:18
10
作者 WEI Hai-yan ZHU Ying +9 位作者 QIU Shi HAN Chao HU Lei XU Dong ZHOU Nian-bing XING Zhi-peng HU Ya-jie CUI Pei-yuan DAI Qi-gen ZHANG Hong-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第11期2405-2417,共13页
There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to stu... There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality. At a low N level (150 kg N ha^-1, 150N), grain yield decreased (by 21.07-26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment. These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle. At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46-10.60%) due to the lower grain weight per panicle. The interaction of shading and N level had a significant effect on the number of primary and secondary branches. A high level of N (300 kg N ha^-1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments. In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18-5.91% in 150N BH. In 150N AH, the grain weight was 13.39-13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax). In inferior grains, grain weight and GRmean had a tendency of 150N NS〉150N BH〉150N AH. Under shaded conditions, 300N decreased the grain weight due to lower GReen both in superior and inferior grains. Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH. Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness. Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice. 展开更多
关键词 shading time N levels grain filling rice quality japonica super rice
在线阅读 下载PDF
Why high grain yield can be achieved in single seedling machine-transplanted hybrid rice under dense planting conditions? 被引量:10
11
作者 HUANG Min SHAN Shuang-lü +2 位作者 XIE Xiao-bing CAO Fang-bo ZOU Ying-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第6期1299-1306,共8页
This study was conducted to identify the factors associated with high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions. Field experiments were done in Yong'an Town, Huna... This study was conducted to identify the factors associated with high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions. Field experiments were done in Yong'an Town, Hunan Province, China in 2015 and 2016. Two hybrid rice cultivars were grown under single seedling machine transplanting (SMT) and conventional machine transplanting (CMT) at a high planting density in each year. Grain yield and yield attributes were compared between SMT and CMT. Averaged across cultivars and years, grain yield was 12% higher under SMT than under CMT. Plant height, basal stem width, and shoot and root dry weights were higher in seedlings for SMT than those for CMT. SMT had less maximum tiller number per m2 and consequently less panicle number per m2 than did CMT. Branch number per panicle, especially the secondary branch number per panicle, and spikelet number per cm of panicle length were more under SMT than under CMT, which resulted in more spikelet number per panicle under SMT than under CMT. SMT had higher or equal spikelet filling percentage than did CMT. The difference in grain weight between SMT and CMT was relatively small and inconsistent cross years. SMT had higher or equal total biomass and harvest index than did CMT. Dry weight per stem under SMT was heavier than that under CMT. Larger leaf area per stem was partly responsible for the heavier dry weight per stem under SMT than under CMT. Our study suggests that improvement in seedling quality, panicle size, and dry weight per stem are critical to the high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions. 展开更多
关键词 grain yield hybrid rice machine transplanting single seedling
在线阅读 下载PDF
Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice 被引量:29
12
作者 ZHANG Hao HOU Dan-ping +8 位作者 PENG Xian-long MA Bing-ju SHAO Shi-mei JING Wen-jiang GU Jun-fei LIU Li-jun WANG Zhi-qin LIU Yuan-ying YANG Jian-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第12期2716-2731,共16页
A major challenge in rice(Oryza sativa L.)production is to cope with increasing grain yield and fertilizer use efficiency without compromising grain quality.This study was designed to determine if optimizing integrati... A major challenge in rice(Oryza sativa L.)production is to cope with increasing grain yield and fertilizer use efficiency without compromising grain quality.This study was designed to determine if optimizing integrative cultivation management in rice could improve grain quality while increase yield and nitrogen use efficiency(NUE).An indica-japonica hybrid rice cultivar and a japonica rice cultivar were grown in the field,with five cultivation managements including no N application(0 N),local farmer's practice(LFP),and three optimizi ng in teg rati ve cultivati on managements,reducing N rate and increasi ng plant density(ND),ND+alternate wetting and moderate soil drying irrigation(NDW),and NDW+applying rapeseed cake fertilizer(NDWR).The results showed that the optimizi ng integrative cultivati on man ageme nts could not only in crease grain yield,but also enhance NUE compared to LFP.Compared to LFP,NDWR sign ifica ntly in creased brow n,milled,head milled rice rate,ratio of the kern el le ngth to breadth and breakdown value of starch,whereas decreased amylose content,gel consiste ncy,prolamin con tent,setback value,perce ntage of chalky kern els,and chalki ness.The three optimizing in tegrative cultivation managements increased con tents of total protei ns,albumin and glutelin,activities of the key enzymes involved in the sucrose-starch con version in grains,root oxidati on activity,and malic and succinic acid concentrations in root exudates during the grain-filling period.The results suggested that optimizing integrative cultivation managements could improve grain quality meanwhile increase grain yield and NUE by enhancing physiological activities of rice plants. 展开更多
关键词 RICE INTEGRATIVE CULTIVATION MANAGEMENT YIELD grain quality nitrogen use efficiency
在线阅读 下载PDF
Detection and enumeration of wheat grains based on a deep learning method under various scenarios and scales 被引量:15
13
作者 WU Wei YANG Tian-le +7 位作者 LI Rui CHEN Chen LIU Tao ZHOU Kai SUN Cheng-ming LI Chun-yan ZHU Xin-kai GUO Wen-shan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期1998-2008,共11页
Grain number is crucial for analysis of yield components and assessment of effects of cultivation measures.The grain number per spike and thousand-grain weight can be measured by counting grains manually,but it is tim... Grain number is crucial for analysis of yield components and assessment of effects of cultivation measures.The grain number per spike and thousand-grain weight can be measured by counting grains manually,but it is time-consuming,tedious and error-prone.Previous image processing algorithms cannot work well with different backgrounds and different sizes.This study used deep learning methods to resolve the limitations of traditional image processing algorithms.Wheat grain image datasets were collected in the scenarios of three varieties,six background and two image acquisition devices with different heights,angles and grain numbers,1748 images in total.All images were processed through color space conversion,image flipping and rotation.The grain was manually annotated,and the datasets were divided into training set,validation set and test set.We used the TensorFlow framework to construct the Faster Region-based Convolutional Neural Network Model.Using the transfer learning method,we optimized the wheat grain detection and enumeration model.The total loss of the model was less than 0.5 and the mean average precision was 0.91.Compared with previous grain counting algorithms,the grain counting error rate of this model was less than 3%and the running time was less than 2 s.The model can be effectively applied under a variety of backgrounds,image sizes,grain sizes,shooting angles,and shooting heights,as well as different levels of grain crowding.It constitutes an effective detection and enumeration tool for wheat grain.This study provides a reference for further grain testing and enumeration applications. 展开更多
关键词 wheat grain deep learning Faster R-CNN object detection COUNTING
在线阅读 下载PDF
Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development 被引量:6
14
作者 Yonglong Yu Dong Zhu +5 位作者 Chaoying Ma Hui Cao Yaping Wang Yanhao Xu Wenying Zhang Yueming Yan 《The Crop Journal》 SCIE CAS CSCD 2016年第2期92-106,共15页
Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese b... Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar(Jimai 20) during grain development using the Gene Chip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis(DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and Map Man analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by q RT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality. 展开更多
关键词 Wheat TRANSCRIPTOME MICROARRAY DIFFERENTIALLY EXPRESSED genes Grain DEVELOPMENT
在线阅读 下载PDF
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:27
15
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
在线阅读 下载PDF
Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission 被引量:19
16
作者 Jianchang Yang Qun Zhou jianhua Zhang 《The Crop Journal》 SCIE CAS CSCD 2017年第2期151-158,共8页
To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,no... To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,non-flooded mulching cultivation,and alternate wetting and drying(AWD).These regimes could substantially enhance water use efficiency(WUE) by reducing irrigation water.However,such enhancements greatly compromise grain yield.Recent work has shown that moderate AWD,in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period,or plants are rewatered at a soil water potential of-10 to-15 k Pa,or midday leaf potential is approximately-0.60 to-0.80 MPa,or the water table is maintained at 10 to 15 cm below the soil surface,could increase not only WUE but also grain yield.Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth;improved canopy structure and root growth;elevated hormonal levels,in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering;and enhanced carbon remobilization from vegetative tissues to grain.Moderate AWD could also improve rice quality,including reductions in grain arsenic accumulation,and reduce methane emissions from paddies.Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency.Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture. 展开更多
关键词 Alternate wetting and drying(AWD) Grain yield Nitrogen use efficiency Rice Water use efficiency
在线阅读 下载PDF
Grain yield,nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates 被引量:7
17
作者 ZHOU Qun YUAN Rui +5 位作者 ZHANG Wei-yang GU Jun-fei LIU Li-jun ZHANG Hao WANG Zhi-qin YANG Jian-chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期63-79,共17页
Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of ... Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes. 展开更多
关键词 indica/japonica hybrid rice grain yield nitrogen use efficiency CYTOKININS non-structural carbohydrate root activity
在线阅读 下载PDF
Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize 被引量:7
18
作者 Jue Wang Pengxiao Fu +1 位作者 Weiping Lu Dalei Lu 《The Crop Journal》 SCIE CSCD 2020年第6期1081-1092,共12页
High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense aga... High temperature(HT)during grain filling is one of the most important environmental factors limiting maize yield and grain quality.Nitrogen(N)fertilizer is essential for maintaining normal plant growth and defense against environmental stresses.The effects of three N rates and two temperature regimes on the grain yield and quality of fresh waxy maize were studied using the hybrids Suyunuo 5(SYN5)and Yunuo 7(YN7)as materials.N application rates were 1.5,4.5,and 7.5 g plant-1,representing low,moderate,and high N levels(LN,MN,and HN,respectively).Mean day/night temperatures during the grain filling of spring-and summer-sown plants were 27.6/21.0°C and 28.6/20.0°C for ambient temperature(AT)and 35/21.0°C and 35/20.0°C for HT,respectively.On average,HT reduced kernel number,weight,yield,and moisture content by 29.8%,17.9%,38.7%,and 3.3%,respectively.Kernel number,weight,yield,moisture,and starch contents were highest under MN among the three N rates under both temperature regimes.HT reduced grain starch content at all N levels.HT increased grain protein content,which gradually increased with N rate.Mean starch granule size under MN was larger(10.9μm)than that under LN and HN(both 10.4μm)at AT.However,the mean size of starch granules was higher under LN(11.7μm)and lower under MN(11.2μm)at HT.Iodine binding capacity(IBC)was lowest under MN and highest under HN among the three N levels under both temperature regimes.In general,IBC at all N rates was increased by HT.Peak viscosity(PV)was gradually reduced with increasing N rate at AT.In comparison with LN,PV was increased by MN and decreased by HN at HT.Retrogradation percentage gradually increased with N rate at AT,but was lowest under MN among the three N rates at HT.LN+AT and MN+HT produced grain with high pasting viscosity and low retrogradation tendency.MN application could alleviate the negative effects of HT on the grain yield and quality of fresh waxy maize. 展开更多
关键词 Fresh waxy maize Grain quality Heat stress Nitrogen rate Starch granule size
在线阅读 下载PDF
Continuous applications of biochar to rice: Effects on grain yield and yield attributes 被引量:14
19
作者 HUANG Min FAN Long +3 位作者 JIANG Li-geng YANG Shu-ying ZOU Ying-bin Norman Uphoff 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第3期563-570,共8页
Biochar is considered as a beneficial soil amendment for crop production. However, limited information is available on the effects of continuous applications of biochar on rice. In this study, a fixed field experiment... Biochar is considered as a beneficial soil amendment for crop production. However, limited information is available on the effects of continuous applications of biochar on rice. In this study, a fixed field experiment was conducted in the early and late rice-growing seasons from 2015 to 2017. Grain yield and yield attributes with a widely-grown rice cultivar Zhongzao 39 were compared, with and without applications of biochar in each season. The results showed that grain yield initially decreased with biochar applications in the first three seasons due to decreases in grain weight and harvest index. Although there were further relative decreases in grain weight and harvest index for rice that was supplied with biochar in the fourth to sixth seasons, grain yield was increased(by 4–10%) because of increases in sink size(spikelets per m2) and total biomass. The increased sink size in rice whose soil had been supplied with biochar in the fourth to sixth seasons was achieved by increasing panicle size(spikelets per panicle) or number of panicles, or both. Our study suggests that the positive effects of biochar application on rice yield and yield attributes depend on the duration of biochar application. Further investigations are needed to determine what are the soil and physiological processes for producing yield responses associated with ongoing applications of biochar. Also, it should be evaluated the performance of biochar application combined with other management practices, especially those can increase the grain weight and harvest index in rice production. 展开更多
关键词 BIOCHAR GRAIN YIELD RICE YIELD attributes
在线阅读 下载PDF
Effects of Early- and Late-Sowing on Starch Accumulation and Associated Enzyme Activities During Grain Filling Stage in Rice 被引量:4
20
作者 WANG Wenting CUI Wenpei +3 位作者 XU Ke GAO Hui WEI Haiyan ZHANG Hongcheng 《Rice science》 SCIE CSCD 2021年第2期191-199,共9页
The environmental temperature occurring during the grain filling stage is an important factoraffecting starch synthesis and accumulation in rice. We investigated starch accumulation, amylaseactivity and starch granule... The environmental temperature occurring during the grain filling stage is an important factoraffecting starch synthesis and accumulation in rice. We investigated starch accumulation, amylaseactivity and starch granule size distribution in two low-amylose japonica rice varieties, Nanjing 9108 andFujing 1606, grown in the field at different filling temperatures by manipulating sowing date. The two ricevarieties exhibited similar performances between two sowing dates. Total starch, amylose andamylopectin contents were lower at the early-filling stage of T1 treatment (Early-sowing) compared withthose at the same stage in T2 treatment (Late-sowing). In contrast, at the late-filling stage, when fieldtemperatures were generally decreasing, total starch and amylopectin contents in T1 were highercompared to those in T2. The ideal temperature for strong activity of ADP-glucose pyrophosphorylaseand soluble starch synthase was about 22℃. A higher temperature from the heading to maturity stagesin T1 increased the activities of starch branching enzyme and suppressed the activities of granule boundstarch synthetase and starch debranching enzyme. We found that rice produced larger-sized starchgranules under the T1 treatment. These results suggested that due to the early-sowing date, the hightemperature (30℃) occurring at the early-filling stage hindered starch synthesis and accumulation,however, the lower temperatures (22 ℃) at the late-filling stage allowed starch synthesis and accumulationto return to normal levels. 展开更多
关键词 RICE grain filling starch accumulation starch synthesis enzyme starch granule size temperature
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部