A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadr...A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.展开更多
Let G=<V, E, L> be a network with the vertex set V, the edge set E and the length vector L, and let T* be a prior determined spanning tree of G. The inverse minimum spanning tree problem with minimum number of p...Let G=<V, E, L> be a network with the vertex set V, the edge set E and the length vector L, and let T* be a prior determined spanning tree of G. The inverse minimum spanning tree problem with minimum number of perturbed edges is to perturb the length vector L to L+ , such that T* is one of minimum spanning trees under the length vector L+ and the number of perturbed edges is minimum. This paper establishes a mathematical model for this problem and transforms it into a minimum vertex covering problem in a bipartite graph G0, a path-graph. Thus a strongly polynomial algorithm with time complexity O(mn2) can be designed by using Hungarian method.展开更多
This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a...This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a goal programming algorithm on the basis of the original techniques. Theoretical analysis and numerical results indicate that the new method contains a lower number of deviation variables and consumes less computational time as compared to current LAV methods.展开更多
文摘A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.
文摘Let G=<V, E, L> be a network with the vertex set V, the edge set E and the length vector L, and let T* be a prior determined spanning tree of G. The inverse minimum spanning tree problem with minimum number of perturbed edges is to perturb the length vector L to L+ , such that T* is one of minimum spanning trees under the length vector L+ and the number of perturbed edges is minimum. This paper establishes a mathematical model for this problem and transforms it into a minimum vertex covering problem in a bipartite graph G0, a path-graph. Thus a strongly polynomial algorithm with time complexity O(mn2) can be designed by using Hungarian method.
基金This research is supported by the National Natural Science Foundation of China (70301014).
文摘This paper develops goal programming algorithm to solve a type of least absolute value (LAV) problem. Firstly, we simplify the simplex algorithm by proving the existence of solutions of the problem. Then, we present a goal programming algorithm on the basis of the original techniques. Theoretical analysis and numerical results indicate that the new method contains a lower number of deviation variables and consumes less computational time as compared to current LAV methods.