The low cycle fatigue strength properties of the additively manufactured Ti-6Al-4V alloy are experimentally investi-gated under proportional and nonproportional multiaxial loading.The fatigue tests were conducted usin...The low cycle fatigue strength properties of the additively manufactured Ti-6Al-4V alloy are experimentally investi-gated under proportional and nonproportional multiaxial loading.The fatigue tests were conducted using hollow cylinder specimens with and without heat treatments,at room temperature in air.Two fatigue tests were conducted:one for proportional loading and one for nonproportional loading.The proportional loading was represented by a push-pull strain path(PP)and the nonproportional loading by a circle strain path(Cl).The failure lives of the additively manufactured specimens were clearly reduced drastically by internal voids and defects.However,the sizes of the defects were measured,and the defects were found not to cause a reduction in fatigue strength above a critical size.The fracture surface was observed using scanning electron microscopy to investigate the fracture mechanisms of the additively manufactured specimens under the two types of strain paths.Different fracture patterns were recognized for each strain paths;however,both showed retention of the crack propagation,despite the presence of numerous defects,probably because of the interaction of the defects.The crack propagation properties of the materials with numerous defects under nonproportional multiaxial loading were clarified to increase the reliability of the additively manufactured components.展开更多
The rapid urban growth in developing city increases the requirement of the efficient and sustainable public transportation system.The urban growth affects the urban form,which indicates the change in human and urban d...The rapid urban growth in developing city increases the requirement of the efficient and sustainable public transportation system.The urban growth affects the urban form,which indicates the change in human and urban development activity.Urban form affects directly and indirectly access to the public transportation system as an assessment of potential riders and proximity to stops increase transit services users.Therefore,access is one of the important aspects for the assessment of transit service efficiency.Public transportation access can be represented by a coverage area and useful to estimate potential riders of public transportation.In this study,a Geographical Information System(GIS)-based spatial statistical analysis method is used to examine the spatial relationship of different urban form indicators with population or riders of transit service in a coverage area and to ascertain how urban form influences public transportation trips in this coverage area.The coverage area is delineated using a GIS-based road/street network distance approach.The spatial analysis results suggested that urban forms have certain impact on trips in coverage area at both ward level and zone level.The statistical analysis implies that significant and positive values of spatial lag coefficient indicate a positive spatial interaction between wards and variable like total coverage area;worker density have shown positive and significant effects on trips of public transportation.展开更多
Electrical Impedance Tomography(EIT)as a non-invasive of electrical conductivity imaging method commonly employs the stationary-coefficient based filters(such as FFT)in order to remove the noise signal.In the practica...Electrical Impedance Tomography(EIT)as a non-invasive of electrical conductivity imaging method commonly employs the stationary-coefficient based filters(such as FFT)in order to remove the noise signal.In the practical applications,the stationary-coefficient based filters fail to remove the time-varying random noise which leads to the lack of impedance measurement sensitivity.In this paper,the implementation of adaptive noise cancellation(ANC)algorithms which are Least Mean Square(LMS)and Normalized Least Mean Square(NLMS)filters onto Field Programmable Gate Array(FPGA)-based EIT system is proposed in order to eliminate the time-varying random noise signal.The proposed method was evaluated through experimental studies with biomaterial phantom.The reconstructed EIT images with NLMS is better than the images with LMS by amplitude response AR=12.5%,position error PE=200%,resolution RES=33%,and shape deformation SD=66%.Moreover,the Analog-to-Digital Converter(ADC)performances of power spectral density(PSD)and the effective number of bit ENOB with NLMS is higher than the performances with LMS by SI=5.7%and ENOB=15.4%.The results showed that implementing ANC algorithms onto FPGA-based EIT system shows significantly more accurate image reconstruction as compared without ANC algorithms implementation.展开更多
基金Supported by Japan Society for the Promotion of Science KAKENHI(Grant No.18H05256).
文摘The low cycle fatigue strength properties of the additively manufactured Ti-6Al-4V alloy are experimentally investi-gated under proportional and nonproportional multiaxial loading.The fatigue tests were conducted using hollow cylinder specimens with and without heat treatments,at room temperature in air.Two fatigue tests were conducted:one for proportional loading and one for nonproportional loading.The proportional loading was represented by a push-pull strain path(PP)and the nonproportional loading by a circle strain path(Cl).The failure lives of the additively manufactured specimens were clearly reduced drastically by internal voids and defects.However,the sizes of the defects were measured,and the defects were found not to cause a reduction in fatigue strength above a critical size.The fracture surface was observed using scanning electron microscopy to investigate the fracture mechanisms of the additively manufactured specimens under the two types of strain paths.Different fracture patterns were recognized for each strain paths;however,both showed retention of the crack propagation,despite the presence of numerous defects,probably because of the interaction of the defects.The crack propagation properties of the materials with numerous defects under nonproportional multiaxial loading were clarified to increase the reliability of the additively manufactured components.
文摘The rapid urban growth in developing city increases the requirement of the efficient and sustainable public transportation system.The urban growth affects the urban form,which indicates the change in human and urban development activity.Urban form affects directly and indirectly access to the public transportation system as an assessment of potential riders and proximity to stops increase transit services users.Therefore,access is one of the important aspects for the assessment of transit service efficiency.Public transportation access can be represented by a coverage area and useful to estimate potential riders of public transportation.In this study,a Geographical Information System(GIS)-based spatial statistical analysis method is used to examine the spatial relationship of different urban form indicators with population or riders of transit service in a coverage area and to ascertain how urban form influences public transportation trips in this coverage area.The coverage area is delineated using a GIS-based road/street network distance approach.The spatial analysis results suggested that urban forms have certain impact on trips in coverage area at both ward level and zone level.The statistical analysis implies that significant and positive values of spatial lag coefficient indicate a positive spatial interaction between wards and variable like total coverage area;worker density have shown positive and significant effects on trips of public transportation.
基金he International Research Fellow of Japan Society for the Promotion of Science(Graduate School of Science and Engineering,Chiba University)and JSPS KAKENHI Grant Number JP18F18060.
文摘Electrical Impedance Tomography(EIT)as a non-invasive of electrical conductivity imaging method commonly employs the stationary-coefficient based filters(such as FFT)in order to remove the noise signal.In the practical applications,the stationary-coefficient based filters fail to remove the time-varying random noise which leads to the lack of impedance measurement sensitivity.In this paper,the implementation of adaptive noise cancellation(ANC)algorithms which are Least Mean Square(LMS)and Normalized Least Mean Square(NLMS)filters onto Field Programmable Gate Array(FPGA)-based EIT system is proposed in order to eliminate the time-varying random noise signal.The proposed method was evaluated through experimental studies with biomaterial phantom.The reconstructed EIT images with NLMS is better than the images with LMS by amplitude response AR=12.5%,position error PE=200%,resolution RES=33%,and shape deformation SD=66%.Moreover,the Analog-to-Digital Converter(ADC)performances of power spectral density(PSD)and the effective number of bit ENOB with NLMS is higher than the performances with LMS by SI=5.7%and ENOB=15.4%.The results showed that implementing ANC algorithms onto FPGA-based EIT system shows significantly more accurate image reconstruction as compared without ANC algorithms implementation.