This recycling of printed circuit board (TCI) for the production of metals, given the environmental degradation that can cause toxic substances of these, is the reuse of valuable materials recovered from the TCI, this...This recycling of printed circuit board (TCI) for the production of metals, given the environmental degradation that can cause toxic substances of these, is the reuse of valuable materials recovered from the TCI, this being an economic engine that promotes the recycling of this waste. This paper presents a methodology for evaluating the reaction kinetics and leaching of metals that form the metal substrate, which have environmental and energy advantages, so the generation of new recovery techniques metals from the TCI low environmental and energy impact is increasingly necessary, for it is essential to establish the parameters affecting the reaction rate and identify design alternatives to determine whether or not sustainable, economically viable and that does not pollute. The method adopted was a leaching acid samples, where the full factorial method employed two experimental levels to evaluate the influence of: leaching time, temperature of the aqueous leach solution, reaction kinetics and solid/liquid, on the percentage of metal extraction. Subsequently, the metals are obtained by calcining and smelting the resulting salts by addition of acid liquor.展开更多
It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontro...It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontrolled dumps. In the practice, even the regulatory instruments are not consolidated and the adequate management of the use of WEEE management, so the aim of this study is an analysis of life cycle of printed circuit boards (TCI) to identify the management alternatives that represent the least impact to the environment. This assessment was carried out using software SIMAPRO to determine the environmental impact of each scenario, through the comparison of impacts and the proposed improvements to reduce it, following phases of this methodology by applying standards, ISO 14040/ISO 14044 [2], using data from the INE official reports since 2006 until 2010 which concentrate the information of the WEEE problem in Mexico. These data were pooled to carry out inventories according to the availability in the information, identifying the environmental impacts generated by processing. The conclusions of the LCA will serve to identify the stage with greater environmental impact, and thus propose ideas for improvement in order to minimize this impact.展开更多
This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density P...This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density Poly-Ethylene (HDPE) mechanically recycled (post-consumer bottles);the official Mexican standard NMX-E-232-SCFI-1999 considers the HDPE as the recyclable plastic material. Thermo-grams based on weight lost were obtained from the raw material (HDPE) and the polymer concrete in order to obtain the glass transition temperature (Tg) and melting temperature (Tf). The analysis conditions were defined from 20°C to 180°C and the heat rate of 1°C/minute. The results show that the glass transition temperature of polymeric concrete is 46°C and the HDPE is 38°C. These results mean that the polymeric concrete is more resistant to decomposition. With respect to the melting temperature, the results show that the 2°C difference between polymeric concrete and HDPE is not significant. The polymeric concrete with HDPE recycled can be considered as composite material thermoplastic. The new material melts when it is heated to 146°C and has the ability to be softened, processed and reprocessed with temperature and pressure changes, which make it possible to obtain molded pieces in the desired shape.展开更多
文摘This recycling of printed circuit board (TCI) for the production of metals, given the environmental degradation that can cause toxic substances of these, is the reuse of valuable materials recovered from the TCI, this being an economic engine that promotes the recycling of this waste. This paper presents a methodology for evaluating the reaction kinetics and leaching of metals that form the metal substrate, which have environmental and energy advantages, so the generation of new recovery techniques metals from the TCI low environmental and energy impact is increasingly necessary, for it is essential to establish the parameters affecting the reaction rate and identify design alternatives to determine whether or not sustainable, economically viable and that does not pollute. The method adopted was a leaching acid samples, where the full factorial method employed two experimental levels to evaluate the influence of: leaching time, temperature of the aqueous leach solution, reaction kinetics and solid/liquid, on the percentage of metal extraction. Subsequently, the metals are obtained by calcining and smelting the resulting salts by addition of acid liquor.
文摘It is estimated that there is a generation of 307,224 ton/year [1] of waste from electronic and electronic equipment (WEEE) in Mexico, of which 10% is recycled, 40% remains stored and 50% reaches landfills or uncontrolled dumps. In the practice, even the regulatory instruments are not consolidated and the adequate management of the use of WEEE management, so the aim of this study is an analysis of life cycle of printed circuit boards (TCI) to identify the management alternatives that represent the least impact to the environment. This assessment was carried out using software SIMAPRO to determine the environmental impact of each scenario, through the comparison of impacts and the proposed improvements to reduce it, following phases of this methodology by applying standards, ISO 14040/ISO 14044 [2], using data from the INE official reports since 2006 until 2010 which concentrate the information of the WEEE problem in Mexico. These data were pooled to carry out inventories according to the availability in the information, identifying the environmental impacts generated by processing. The conclusions of the LCA will serve to identify the stage with greater environmental impact, and thus propose ideas for improvement in order to minimize this impact.
文摘This paper presents the results of the characterization by thermogravimetric analysis of a new composite material called polymeric concrete. The polymeric concrete contains micro-particles obtained from High Density Poly-Ethylene (HDPE) mechanically recycled (post-consumer bottles);the official Mexican standard NMX-E-232-SCFI-1999 considers the HDPE as the recyclable plastic material. Thermo-grams based on weight lost were obtained from the raw material (HDPE) and the polymer concrete in order to obtain the glass transition temperature (Tg) and melting temperature (Tf). The analysis conditions were defined from 20°C to 180°C and the heat rate of 1°C/minute. The results show that the glass transition temperature of polymeric concrete is 46°C and the HDPE is 38°C. These results mean that the polymeric concrete is more resistant to decomposition. With respect to the melting temperature, the results show that the 2°C difference between polymeric concrete and HDPE is not significant. The polymeric concrete with HDPE recycled can be considered as composite material thermoplastic. The new material melts when it is heated to 146°C and has the ability to be softened, processed and reprocessed with temperature and pressure changes, which make it possible to obtain molded pieces in the desired shape.