期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Shear fracture behavior and fracture fractal characteristics of granite under adverse effect of cyclic heating
1
作者 JIANG Tian-qi CHEN Bing +5 位作者 ZHANG Qing-song SHEN Bao-tang BAI Ji-wen LIU Ren-tai CHEN Meng-jun SASAOKA Takashi 《Journal of Central South University》 2025年第9期3405-3426,共22页
Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors i... Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process. 展开更多
关键词 progressive thermal damage stress distribution characteristics two-dimensional fracture path three-dimensional fracture surface failure characteristics fractal dimension
在线阅读 下载PDF
Experimental Study on Performance of Multidirectional Geogrid and Its Application in Engineering of High Slope 被引量:6
2
作者 王清标 WEN Xiaokang +2 位作者 JIANG Jinquan ZHANG Cong SHI Zhenyue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期704-711,共8页
By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the ef... By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld. 展开更多
关键词 multidirectional geogrid creep characteristics interfacial friction high slope reinforced soil
原文传递
FDSC-YOLOv8:Advancements in Automated Crack Identification for Enhanced Safety in Underground Engineering 被引量:2
3
作者 Rui Wang Zhihui Liu +2 位作者 Hongdi Liu Baozhong Su Chuanyi Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期3035-3049,共15页
In underground engineering,the detection of structural cracks on tunnel surfaces stands as a pivotal task in ensuring the health and reliability of tunnel structures.However,the dim and dusty environment inherent to u... In underground engineering,the detection of structural cracks on tunnel surfaces stands as a pivotal task in ensuring the health and reliability of tunnel structures.However,the dim and dusty environment inherent to under-ground engineering poses considerable challenges to crack segmentation.This paper proposes a crack segmentation algorithm termed as Focused Detection for Subsurface Cracks YOLOv8(FDSC-YOLOv8)specifically designed for underground engineering structural surfaces.Firstly,to improve the extraction of multi-layer convolutional features,the fixed convolutional module is replaced with a deformable convolutional module.Secondly,the model’s receptive field is enhanced by introducing a multi-branch convolutional module,improving the extraction of shallow features for small targets.Next,the Dynamic Snake Convolution module is incorporated to enhance the extraction capability for slender and weak cracks.Finally,the Convolutional Block Attention Module(CBAM)module is employed to achieve better target determination.The FDSC-YOLOv8s algorithm’s mAP50 and mAP50-95 reach 96.5%and 66.4%,according to the testing data. 展开更多
关键词 Crack segmentation improved YOLOv8 engineering applications feature extraction
在线阅读 下载PDF
Permeability evolution of the rock-concrete interface in underground high-pressure gas storage
4
作者 Meng Wang Bing Chen +5 位作者 Jiwei Xu Yu'an Gong Xinyi Gao Xuekai Li Mengtian Li Rentai Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4539-4558,共20页
The structural integrity of the interface between a concrete plug and the surrounding rock may be compromised during frequent cycles of air charging,discharging,and storage,which is typical of compressed air energy st... The structural integrity of the interface between a concrete plug and the surrounding rock may be compromised during frequent cycles of air charging,discharging,and storage,which is typical of compressed air energy storage systems in abandoned mines.To investigate this,nitrogen permeability tests were conducted on the interface samples of rockeconcrete interface in both consolidated and unconsolidated states under cyclic loading.The variations in the flow rate throughout the permeability process under different cycle numbers and load range conditions were investigated.The microscopic analysis at the interfaces was imaged using computed tomography scanning.The results indicated that the gas permeability of the cemented interfaces with different roughness values varied with confining pressure ranging from 10^(-13) m^(2) to 10^(-12) m^(2),whereas that of the non-cemented interfaces ranged from 10^(-12) m^(2) to 10^(-11) m^(2).A larger load variation range encompassed the permeability variation characteristics within a smaller variation range.The evolution pattern of the permeability ratio with the number of cycles was influenced by the inlet pressure.The greater the inlet pressure,the larger the increment ratio of the permeability.The permeability change patterns of interfaces with different roughness values were similar.Microscopic analysis revealed that pores inside the concrete were connected to the interface gaps.Under the coupling of stress and gas pressure,the gas could penetrate the crack tips or pores,accelerating the development of microcracks during the cyclic opening and closing of the pores.This study provides valuable insights into the safe long-term operation of underground high-pressure air storage. 展开更多
关键词 Compressed air energy storage(CAES) Rock-concrete interface Cyclic loading Gas permeability Microscopic analysis
在线阅读 下载PDF
Effect of heterogeneity on mechanical and acoustic emission characteristics of rock specimen 被引量:8
5
作者 李术才 李国莹 《Journal of Central South University》 SCIE EI CAS 2010年第5期1119-1124,共6页
The influence of heterogeneity on mechanical and acoustic emission characteristics of rock specimen under uniaxial compress was studied with numerical simulation methods.Weibull distribution function was adopted to de... The influence of heterogeneity on mechanical and acoustic emission characteristics of rock specimen under uniaxial compress was studied with numerical simulation methods.Weibull distribution function was adopted to describe the mesoscopic heterogeneity of rocks.The failure process of heterogeneous rock specimen under uniaxial loading was simulated using FLAC 3D software.Five schemes were adopted to investigate the influence of heterogeneity.The results demonstrate that as the homogeneity increases,the peak strength and brittleness of rocks increase,and the macro elastic modulus improves as well.Heterogeneity has great influence on macro elastic modulus and strength when the homogeneity coefficient is less than 20.0.The volume expansion is not so obvious when the homogeneity increases.As the homogeneity coefficient increases the acoustic emissions modes change from swarm shock to main shock.When the homogeneity coefficient is high,the cumulative acoustic emission events-axial strain curve is gentle before the rock failure.The numerical results agree with the previously numerical results and earlier experimental measurements. 展开更多
关键词 HETEROGENEITY acoustic emission strain softening numerical simulation uniaxial compression elastic modulus
在线阅读 下载PDF
Deep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection 被引量:13
6
作者 Zhenhao Xu Wen Ma +1 位作者 Peng Lin Yilei Hua 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1140-1152,共13页
An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNe... An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNet_v2,Inception_v3,Densenet121,ResNet101_v2,and ResNet-101 to develop microscopic image classification models,and then the network structures of seven different convolutional neural networks(CNNs)were compared.It shows that the multi-layer representation of rock features can be represented through convolution structures,thus better feature robustness can be achieved.For the loss function,cross-entropy is used to back propagate the weight parameters layer by layer,and the accuracy of the network is improved by frequent iterative training.We expanded a self-built dataset by using transfer learning and data augmentation.Next,accuracy(acc)and frames per second(fps)were used as the evaluation indexes to assess the accuracy and speed of model identification.The results show that the Xception-based model has the optimum performance,with an accuracy of 97.66%in the training dataset and 98.65%in the testing dataset.Furthermore,the fps of the model is 50.76,and the model is feasible to deploy under different hardware conditions and meets the requirements of rapid lithology identification.This proposed method is proved to be robust and versatile in generalization performance,and it is suitable for both geologists and engineers to identify lithology quickly. 展开更多
关键词 Deep learning Rock microscopic images Automatic classification Lithology identification
在线阅读 下载PDF
A grouting simulation method for quick-setting slurry in karst conduit:The sequential flow and solidification method 被引量:6
7
作者 Zhenhao Xu Dongdong Pan +3 位作者 Shucai Li Yichi Zhang Zehua Bu Jie Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期423-435,共13页
It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial... It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial-temporal evolution of slurry viscosity in flowing water in karst conduit is proposed.First,a time-dependent model for the threshold function of slurry viscosity is established.During the grouting process,the spatial-temporal evolution of slurry viscosity is revealed by tracking the diffusion behavior of the slurry injected at different times.This method is capable of describing the gradual solidification process of the slurry during grouting.Furthermore,a physical model of grouting in a karst conduit is developed.Second,the effectiveness of the SFS method in grouting simulation is verified by the experiment of grouting conduit in flowing water.The SFS method enables real-time monitoring of fluid velocity and pressure during grouting in flowing water and provides a feasible calculation method for revealing the grouting plugging mechanism in complex karst conduits at different engineering scales.In addition,it can be used to guide the design of grouting tests in flowing water,improve cost efficiency,and provide theoretical basis for optimizing grouting design and slurry selection. 展开更多
关键词 Karst conduit Sequential flow and solidification(SFS) Quick-setting slurry Grouting simulation method Grouting in flowing water
在线阅读 下载PDF
True triaxial hydraulic fracturing test and numerical simulation of limestone 被引量:10
8
作者 YANG Wei-min GENG Yang +4 位作者 ZHOU Zong-qing LI Lian-chong DING Ruo-song WU Zhong-hu ZHAI Ming-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3025-3039,共15页
Hydraulic fracturing,as a key technology of deep energy exploitation,accelerates the rapid development of the modern petroleum industry.To study the mechanisms of hydraulic fracture propagation and rock failure mode o... Hydraulic fracturing,as a key technology of deep energy exploitation,accelerates the rapid development of the modern petroleum industry.To study the mechanisms of hydraulic fracture propagation and rock failure mode of the vertical well hydraulic fracturing,the true triaxial hydraulic fracturing test and numerical simulation are carried out,and the influence of the principal stress difference,water injection displacement,perforation angle and natural fracture on fracture propagation is analyzed.The results show that the fracture propagation mode of limestone is mainly divided into two types:the single vertical fracture and the transverse-longitudinal crossed complex fracture.Under high displacement,the fracturing pressure is larger,and the secondary fracture is more likely to occur,while variable displacement loading is more likely to induce fracture network.Meanwhile,the amplitude of acoustic emission(AE)waveform of limestone during fracturing is between 0.01 and 0.02 mV,and the main frequency is maintained in the range of 230−300 kHz.When perforation angleθ=45°,it is easy to produce the T-type fracture that connects with the natural fracture,while X-type cracks are generated whenθ=30°.The results can be used as a reference for further study on the mechanism of limestone hydraulic fracturing. 展开更多
关键词 true triaxial hydraulic fracturing acoustic emission particle flow code(PFC) perforation angle natural fracture
在线阅读 下载PDF
Experimental research into the effect of gas pressure,particle size and nozzle area on initial gas-release energy during gas desorption 被引量:8
9
作者 Weitao Hou Hanpeng Wang +3 位作者 Liang Yuan Wei Wang Yang Xue Zhengwei Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期253-263,共11页
Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument... Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst. 展开更多
关键词 Coal and gas outburst Initial expansion energy of released gas Gas pressure Particle size Nozzle area
在线阅读 下载PDF
Energy distribution and effective components analysis of 2^(n) sequence pseudo-random signal 被引量:8
10
作者 Yang YANG Ji-shan HE Di-quan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期2102-2115,共14页
In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice ... In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice of signal type for different exploration tasks.By the threshold of the amplitude of the transmitted signal,a set of candidate frequencies are first selected.Then,by operating a spectrum envelope method at these candidate frequencies on received data,effective components in data are extracted.A frequency density calculation method is proposed based on a logical number summation method,to reasonably characterize the frequency density in different frequency bands.By applying this method to real data in Sichuan,China,with signal Type 13,75 effective components are extracted,including both main frequencies and harmonics.The result suggests that the number of effective frequencies in the 2^(n) sequence pseudo-random signal can be increased by extracting usable harmonics,without any additional fieldwork. 展开更多
关键词 electromagnetic prospecting 2^(n) pseudo-random signal energy conservation harmonic extraction frequency density
在线阅读 下载PDF
Relationship between rock uniaxial compressive strength and digital core drilling parameters and its forecast method 被引量:10
11
作者 Hongke Gao Qi Wang +3 位作者 Bei Jiang Peng Zhang Zhenhua Jiang Yue Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期605-613,共9页
The rock uniaxial compressive strength(UCS)is the basic parameter for support designs in underground engineering.In particular,the rock UCS should be obtained rapidly for underground engineering with complex geologica... The rock uniaxial compressive strength(UCS)is the basic parameter for support designs in underground engineering.In particular,the rock UCS should be obtained rapidly for underground engineering with complex geological conditions,such as soft rock,fracture areas,and high stress,to adjust the excavation and support plan and ensure construction safety.To solve the problem of obtaining real-time rock UCS at engineering sites,a rock UCS forecast idea is proposed using digital core drilling.The digital core drilling tests and uniaxial compression tests are performed based on the developed rock mass digital drilling system.The results indicate that the drilling parameters are highly responsive to the rock UCS.Based on the cutting and fracture characteristics of the rock digital core drilling,the mechanical analysis of rock cutting provides the digital core drilling strength,and a quantitative relationship model(CDP-UCS model)for the digital core drilling parameters and rock UCS is established.Thus,the digital core drilling-based rock UCS forecast method is proposed to provide a theoretical basis for continuous and quick testing of the surrounding rock UCS. 展开更多
关键词 Digital core drilling Mechanical analysis Rock UCS Quantitative relationship model Forecast method
在线阅读 下载PDF
Experimental and theoretical study on the dynamic effective stress of loaded gassy coal during gas release 被引量:6
12
作者 Bing Zhang Hanpeng Wang +2 位作者 Peng Wang Guofeng Yu Shitan Gu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期339-349,共11页
In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the s... In the process of mining coalbed methane(CBM),an unsteady state often arises due to the rapid extraction,release and pressure relief of CBM.In this case,the effective stress of coal changes dynamically,affecting the stability of the gassy coal seam.In this paper,gas release tests of gassy coal under conventional triaxial compression were performed,and the dynamic effective stress(DES)during gas release was obtained indirectly based on a constitutive equation and deformation of coal.The results show that the maximum increases in DES caused by the release of free gas and adsorbed gas under the stress of 1.1 MPa were 0.811 and 5.418 MPa,respectively,which seriously affected the stress state of the coal.During the gas release,the free gas pressure and the adsorbed gas volume were the parameters that directly affected the DES and showed a positive linear relationship with the DES with an intercept of zero.The DES of the coal sample increased exponentially with time,which was determined by the contents of free and adsorbed gas.Based on the experimental results and theoretical analysis,an effective stress model was obtained for loaded gassy coal during gas release.The results of verification indicated accuracy greater than 99%. 展开更多
关键词 Gassy coal Dynamic effective stress Gas release Gas-solid coupling Mathematical model
在线阅读 下载PDF
Adverse Geology Identification Through Mineral Anomaly Analysis During Tunneling:Methodology and Case Study 被引量:4
13
作者 Zhenhao Xu Tengfei Yu +1 位作者 Peng Lin Shucai Li 《Engineering》 SCIE EI CAS CSCD 2023年第8期150-160,共11页
Accurate and effective identification of adverse geology is crucial for safe and efficient tunnel construction.Current methods of identifying adverse geology depend on the experience of geologists and are prone to mis... Accurate and effective identification of adverse geology is crucial for safe and efficient tunnel construction.Current methods of identifying adverse geology depend on the experience of geologists and are prone to misjudgment and omissions.Here,we propose a method for adverse geology identification in tunnels based on mineral anomaly analysis.The method is based on the theory of geoanomaly,and the mineral anomalies are geological markers of the presence of adverse geology.The method uses exploration data analysis(EDA)to calculate mineral anomaly thresholds,then evaluates the mineral anomalies based on the thresholds and identifies adverse geology based on the characteristics of the mineral anomalies.We have established a dynamic expansion process for background samples to achieve the dynamic evaluation of mineral anomalies by adjusting anomaly thresholds.This method has been validated and applied in a tunnel excavated in granite.As shown herein,in the tunnel range of 142+800–142+860,the fault F37 was successfully identified based on an anomalous decrease in the diagenetic minerals plagioclase and hornblende,as well as an anomalous increase in the content of the alteration minerals chlorite,laumonite,and epidote.The proposed method provides a timely warning when a tunnel enters areas affected by adverse geology and identifies whether the tunnel is gradually approaching or moving away from the fault.In addition,the applicability,accuracy,and further improvement of the method are discussed.This method improves our ability to identify adverse geology,from qualitative to quantitative,and can provide reference and guidance for the identification of adverse geology in mining and underground engineering. 展开更多
关键词 Mineral anomaly Adverse geology Fault ALTERATION Anomaly threshold
在线阅读 下载PDF
Distributed wide field electromagnetic method based on high-order 2^(n) sequence pseudo random signal 被引量:5
14
作者 Yang YANG Ji-shan HE +1 位作者 Fan LING Yu-zhen ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1609-1622,共14页
To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this meth... To make three-dimensional electromagnetic exploration achievable,the distributed wide field electromagnetic method(WFEM)based on the high-order 2^(n) sequence pseudo-random signal is proposed and realized.In this method,only one set of high-order pseudo-random waveforms,which contains all target frequencies,is needed.Based on high-order sequence pseudo-random signal construction algorithm,the waveform can be customized according to different exploration tasks.And the receivers are independent with each other and dynamically adjust the acquisition parameters according to different requirements.A field test in the deep iron ore of Qihe−Yucheng showed that the distributed WFEM based on high-order pseudo-random signal realizes the high-efficiency acquisition of massive electromagnetic data in quite a short time.Compared with traditional controlled-source electromagnetic methods,the distributed WFEM is much more efficient.Distributed WFEM can be applied to the large scale and high-resolution exploration for deep resources and minerals. 展开更多
关键词 distributed wide field electromagnetic method(WFEM) high-order pseudo-random signal MULTIFREQUENCY massive data
在线阅读 下载PDF
Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method:A review 被引量:17
15
作者 Shucai Li Bin Liu +5 位作者 Lichao Nie Zhengyu Liu Mingzhen Tian Shirui Wang Maoxin Su Qian Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第4期469-478,共10页
Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current... Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC) resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection;with this method, the flanking interference can be reduced and the detection dis-tance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D) induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1) available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM), (2) high-resolution detection method in holes, (3) four-dimensional (4D) monitoring technology for water inrush sources, and (4) estimation of water volume in water-bearing structures. 展开更多
关键词 Direct current (DC) resistivity methodTechnical statusLatest progressUnderground engineeringWater inrushRoutine detectionAdvanced detectionReal-time monitoring
在线阅读 下载PDF
Theoretical and experimental study on the rheological properties of WIS grout and the dispersion and sealing mechanism 被引量:2
16
作者 Mengmeng Zhou Shucai Li +3 位作者 Zhuo Zheng Rentai Liu Mengjun Chen Chenyang Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期669-684,共16页
Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter gr... Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter grouting(ICG) was proposed to investigate the influence of water dispersion on the rheological properties of the grout during the grouting process, and to testify the sealing performance of the grout,such as instant gelling ability(IGA) and anti-dispersion ability(ADA). In the experiment, dispersion was restricted in the downstream of the channel with a high turbulence intensity. The influences of ADA and IGA were therefore decoupled and evaluated separately. Experimental results revealed two distinctive sealing mechanisms of WIS. For a low initial velocity of water, WIS turned the shear flow of water into an overall movement of a plug by absorbing water into the particles. For a high initial velocity and the situation that the particles reached the outlet before sufficiently expanding, WIS modified the rheology of the water in the channel and reduced its velocity till the static state. The distinctive feature of WIS brings a reformation on the sealing mechanism and provides an effective way to control water inflow with high pressure and velocity. 展开更多
关键词 WIS grout material Grouting treatment Water inflow Sealing mechanism Flow regularity
在线阅读 下载PDF
Forward prediction for tunnel geology and classification of surrounding rock based on seismic wave velocity layered tomography 被引量:3
17
作者 Bin Liu Jiansen Wang +2 位作者 Senlin Yang Xinji Xu Yuxiao Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期179-190,共12页
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron... Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application. 展开更多
关键词 Tunnel geological forward-prospecting Seismic wave velocity Layered inversion Surrounding rock classification Artificial neural network(ANN)
在线阅读 下载PDF
Extraction and imaging of indicator elements for non-destructive,in-situ,fast identification of adverse geology in tunnels 被引量:1
18
作者 Fumin Liu Peng Lin +2 位作者 Zhenhao Xu Ruiqi Shao Tao Han 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1437-1449,共13页
The lag in quantitative methods and detection techniques for geologic information has resulted in time-consuming and human-experienced geologic analysis in tunnels.Geochemical indicators of rocks can be used to identi... The lag in quantitative methods and detection techniques for geologic information has resulted in time-consuming and human-experienced geologic analysis in tunnels.Geochemical indicators of rocks can be used to identify adverse geology and to explain the intrinsic causes of damage to normal rocks.This study proposes a method to identify adverse geology by extracting and imaging the indicator elements.The mapping relationship between rock components and geologic bodies is quickly determined by indicator element extraction based on factor analysis,and then the data are gridded for image output.The location and size of the target adverse geology are visually identified through the distribution images of the indicator elements,thus reducing data dimensions and analysis time.A non-destructive,in-situ and fast element detection technique in tunnels was adopted to speed up the process of geology identification.The accuracy of the detection was validated by comparing field and laboratory test results.This study further confirms and refines the previous research,and the results provide references for geological,mining and underground projects. 展开更多
关键词 Adverse geology identification Indicator elements Rock geochemistry Tunnel engineering Geological analysis
在线阅读 下载PDF
Intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization 被引量:1
19
作者 Bin Liu Jiwen Wang +2 位作者 Ruirui Wang Yaxu Wang Guangzu Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2842-2856,共15页
The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.Fo... The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%. 展开更多
关键词 TBM operating Parameters Rock-machine mapping Intelligent decision-making MULTI-CONSTRAINTS Deep learning
在线阅读 下载PDF
基于切削能密度的岩体强度-裂隙随钻识别方法 被引量:3
20
作者 高红科 王琦 +6 位作者 马凤林 江贝 翟大虎 蔡松林 章冲 卞振国 刘光杰 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第2期621-635,共15页
岩体强度与裂隙参数是反映工程岩体质量的基本参数,其准确获取是进行地下工程围岩分级与支护合理设计优化的前提。传统的岩体强度测试方法需要对现场围岩取芯并运至实验室测试,测试结果难以反映工程现场环境下的岩体力学性质,而对于岩... 岩体强度与裂隙参数是反映工程岩体质量的基本参数,其准确获取是进行地下工程围岩分级与支护合理设计优化的前提。传统的岩体强度测试方法需要对现场围岩取芯并运至实验室测试,测试结果难以反映工程现场环境下的岩体力学性质,而对于岩体强度与裂隙参数的原位测试方法研究较少。本文基于能量守恒定律,建立了岩石切削能密度与随钻参数的关系式,构建了岩体等效强度随钻反演模型(ES-DP模型),系统开展了岩体数字钻进试验。结果表明,相对于传统测试方法,岩体等效强度随钻测试结果平均差异率为2.4%,验证了ES-DP模型对岩体等效强度测试的有效性。在此基础上,建立了岩体裂隙参数随钻识别模型,与实际测量结果相比,该模型测得的岩体裂隙位置与宽度平均精度分别为1.8和1.6 mm,测试精度较高。基于上述研究,本文提出了一种岩体强度-裂隙随钻识别方法,为实现地下工程围岩强度参数与结构特征的原位实时测试提供了新方法。 展开更多
关键词 切削能密度 等效强度 结构特征 随钻识别 原位测试
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部