期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Recent advances of digitization in rock mechanics and rock engineering 被引量:1
1
作者 Hehua Zhu Xiaojun Li Xiaoying Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期220-233,共14页
In recent years, there are growing demands of representing rock mechanics and rock engineering in a digital format that can be easily managed, manipulated, analyzed and shared. The objective of this paper is to give a... In recent years, there are growing demands of representing rock mechanics and rock engineering in a digital format that can be easily managed, manipulated, analyzed and shared. The objective of this paper is to give a comprehensive review of the status quo and future trends of digitization in rock mechanics and rock engineering. Research topics essential to the process of digitization are firstly discussed, including data acquisition, data standardization, geological modeling, visualization and digital-numerical integration. New techniques that will play an important role in digitization process but require further improvement are then briefly proposed. Finally, achievements of present methods and techniques for digitization in substantial rock mechanics and rock engineering are presented. 展开更多
关键词 information digitization rock mechanics and rock engineering digital tunnel digital-numerical integration
在线阅读 下载PDF
Thermal effect on shear and compressive behaviors of rock fractures:Cases of sandstone and granite
2
作者 Abdel Kareem Alzo'ubi Mahmoud Alneasan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7007-7022,共16页
The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal tr... The growing demand for geothermal energy exploration and deep engineering projects necessitates a deeper understanding of rock behavior under extreme thermal conditions.This study investigates the effect of thermal treatment on the shear behavior of sedimentary sandstone and igneous granite,which are abundant in the Earth's crust.Direct shear tests were conducted on rock joints at room temperature(RT),250℃,and 500℃.The results show that the joints in sandstone and granite exhibit improved compressive and shear strength up to a temperature threshold of 200℃–350℃,followed by significant weakening beyond this range.This study investigated key parameters,including normal and shear stiffness,maximum joint closure,peak and residual shear strengths,internal friction angle,dilation angle,and cohesion.The compressive behavior of both rock types followed a modifiedBandis's equation.The peak shear strength followed Patton's bilinear and Jaeger's nonlinear failure criteria more accurately than the Mohr–Coulomb criterion.The results of this study provide valuable insights into the temperature-dependent behavior of sandstone and granite joints under compressive and shear loads,and their interoperation was strongly dependent on the mineralogical and structural components of the two rock types.These results have advanced our understanding of the temperature-dependent behavior of rock fractures,improving the safety of underground structures under thermal effects. 展开更多
关键词 Sedimentary sandstone Igneous granite Thermal treatment Joint shear behavior Joint compressive behavior Direct shear test
在线阅读 下载PDF
评价饱和砂土液化过程中小应变到大应变的本构模型(英文) 被引量:22
3
作者 张建民 王刚 《岩土工程学报》 EI CAS CSCD 北大核心 2004年第4期546-552,共7页
在RambergOsgood模型的基础上,建立了一个实用的能描述饱和砂土从液化前小应变到初始液化后大应变范围的非线性本构模型。该模型主要有三个特点:①采用作者曾提出的移动相态转换线(MPTL)和移动临界状态线(MCSL)概念来较为合理地描述变... 在RambergOsgood模型的基础上,建立了一个实用的能描述饱和砂土从液化前小应变到初始液化后大应变范围的非线性本构模型。该模型主要有三个特点:①采用作者曾提出的移动相态转换线(MPTL)和移动临界状态线(MCSL)概念来较为合理地描述变形过程中的有效应力路径和临界状态;②采用一个应力软化模型来描述剪胀和定义超静孔压变化引起的骨架曲线的软化与硬化;③基于笔者等提出的液化后大变形理论来描述初始液化后产生的大剪切变形。文中通过对室内循环剪切试验结果的模拟,验证了模型的预测能力。该模型适用于水平饱和砂土地基的有效应力地震反应分析。 展开更多
关键词 砂土 本构模型 液化后大变形 Ramberg—Osgood模型
在线阅读 下载PDF
Seismic responses of high concrete face rockfill dams:A case study 被引量:6
4
作者 Sheng-shui Chen Zhong-zhi Fu +1 位作者 Kuang-ming Wei Hua-qiang Han 《Water Science and Engineering》 EI CAS CSCD 2016年第3期195-204,共10页
Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent s... Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent strain model. The relevant parameters were obtained either by back analysis using the field observations or by reference to parameters of similar rockfill materials. The acceleration responses of the dam,the distribution of earthquake-induced settlement, and the gap propagation under the concrete slabs caused by the settlement of the dam were analyzed and compared with site investigations or relevant studies. The mechanism of failure of horizontal construction joints was also analyzed based on numerical results and site observations. Numerical results show that the input accelerations were considerably amplified near the top of the dam, and the strong shaking resulted in considerable settlement of the rockfill materials, with a maximum value exceeding 90 cm at the crest.As a result of the settlement of rockfill materials, the third-stage concrete slabs were separated from the cushion layer. The rotation of the cantilever slabs about the contacting regions, under the combined action of gravity and seismic inertial forces, led to the failure of the construction joints and tensile cracks appeared above the construction joints. The effectiveness and limitations of the so-called equivalent linear method are also discussed. 展开更多
关键词 Concrete face ROCKFILL DAM (CFRD) SEISMIC response Zipingpu PERMANENT strain Construction joint VISCOELASTIC model Finite element method
在线阅读 下载PDF
Centrifugal and field studies on water infiltration characteristics below canals under wetting-drying-freezing-thawing cycles 被引量:6
5
作者 ZHU Rui CAI Zheng-yin +3 位作者 HUANG Ying-hao ZHANG Chen GUO Wan-li ZHU Xun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1519-1533,共15页
Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang,China.In this study,centrifugal model tests under wetting-drying(WD)and wetting-drying-freezing-thawing(WDFT)cycles wer... Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang,China.In this study,centrifugal model tests under wetting-drying(WD)and wetting-drying-freezing-thawing(WDFT)cycles were performed to investigate the water infiltration characteristics below a canal.The results show that the shallow soil of the canal models was fully saturated in the wetting process.Compared with the canal model under the WD cycles,the canal model under the WDFT cycles had larger saturated areas and a higher degree of saturation below the canal top after each cycle,indicating that the freezing-thawing(FT)process in the WDFT cycles promoted the water infiltration behavior below the canal slope.The cracks on the surface of the canal model under the cyclic action of WDFT developed further and had a higher connectivity,which provided the conditions for slope instability from a transverse tensile crack running through the canal top.On this basis,a field test was conducted to understand the water infiltration distribution below a typical canal in Xinjiang,China,which also verified the accuracy of the centrifugal results.This study provides a preliminary basis for the maintenance and seepage treatment of canals in Xinjiang,China. 展开更多
关键词 wetting-drying FREEZING-THAWING water infiltration crack CANALS centrifugal model test
在线阅读 下载PDF
Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion 被引量:18
6
作者 Yubing Yang Xiongyao Xie Rulu Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第4期373-384,共12页
To evaluate the effects of possible ground explosion on a shallow-buried metro tunnel, this paper attempts to analyze the dynamic responses of the operating metro tunnel in soft soil, using a widely applied explicit d... To evaluate the effects of possible ground explosion on a shallow-buried metro tunnel, this paper attempts to analyze the dynamic responses of the operating metro tunnel in soft soil, using a widely applied explicit dynamic nonlinear finite element software ANSYS/LS-DYNA. The blast induced wave propagation in the soil and the tunnel, and the von Mises effective stress and acceleration of the tunnel lining were presented, and the safety of the tunnel lining was evaluated based on the failure criterion. Besides, the parametric study of the soil was also carried out. The numerical results indicate that the upper part of the tunnel lining cross-section with directions ranging from 0° to 22.5° and horizontal distances 0 to 7 m away from the explosive center are the vulnerable areas, and the metro tunnel might be safe when tunnel depth is more than 7 m and TNT charge on the ground is no more than 500 kg, and the selection of soil parameters should be paid more attentions to conduct a more precise analysis. 展开更多
关键词 ground surface explosion numerical simulation metro tunnel dynamic response
在线阅读 下载PDF
Influences affecting the soil-water characteristic curve 被引量:9
7
作者 周建 俞建霖 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期797-804,共8页
The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the ... The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model. 展开更多
关键词 Soil-water characteristic curve (SWCC) Unsaturated soil Mathematical expression
在线阅读 下载PDF
Numerical Analysis of Interaction Between Pile-Supported Pier and Bank Slope 被引量:5
8
作者 WANG Nianxiang(王年香) 《China Ocean Engineering》 SCIE EI 2001年第1期117-128,共12页
Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is... Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is used. The influence of the combination type of piles on the deformation of bank slope and pile behaviour is analyzed. Different designs of a pile-supported pier are compared thoroughly. Calculation results show that the stresses and displacements of the pile are directly related to the distance from the bank slope and the direction of inclination. An inclined prop pile set in the rear platform would remarkably reduce the stresses of piles and the displacement of the pier. 展开更多
关键词 INTERACTION pile-supported pier bank slope numerical analysis
在线阅读 下载PDF
Fly Ash/Paraffin Composite Phase Change Material Used to Treat Thermal and Mechanical Properties of Expansive Soil in Cold Regions 被引量:5
9
作者 Yong Chen Yinghao Huang +1 位作者 Min Wu Shuo Wang 《Journal of Renewable Materials》 SCIE EI 2022年第4期1153-1173,共21页
Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material w... Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design. 展开更多
关键词 Composite phase change material freeze-thaw performance expansive soil thermal properties mechanical properties
在线阅读 下载PDF
Estimations of Three Characteristic Stress Ratios for Rockfill Material Considering Particle Breakage 被引量:3
10
作者 Wan-Li Guo Zheng-Yin Cai +1 位作者 Ying-Li Wu Zhi-Zhou Geng 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2019年第2期215-229,共15页
The particle breakage during specimen shearing has a significant influence on the critical-state line (CSL) of the rockfill material. A series of large-scale triaxial compression tests on the rockfill material from He... The particle breakage during specimen shearing has a significant influence on the critical-state line (CSL) of the rockfill material. A series of large-scale triaxial compression tests on the rockfill material from Henan Province (HPR) were conducted in a wide range of initial void ratios and confining pressures. The influences of the particle breakage on the critical-state stress ratio Mc, the peak stress ratio Mp and dilatancy stress ratio Md were investigated. The deviatoric stress and particle breakage of the HPR at the critical state increase with the increase in confining pressure, while the influences of the initial void ratio on these behaviors are too little to be considered. The gradient of the CSL in the q-p space of the rockfilL Mc, was found to be passively correlated with the particle breakage index rather than being a constant. Additionally, the observed values of Mc at low confining pressures (low particle breakage occur) will be substantially undervalued if Mc is estimated as a constant. In the critical-state-theorybased constitutive models, Mp and Md are estimated as the combinations of Mc and state parameter 0. It is believed that the simulations of Mp and Md when Mc is correlated with Br are obviously more favorable than those when Mc is constant. 展开更多
关键词 Rockfill. PARTICLE BREAKAGE CRITICAL-STATE line Stress RATIO
原文传递
Pre-Failure Behavior of Deep-Situated Osaka Clay 被引量:5
11
作者 T.HONGO M.FUKUDA +1 位作者 T.ADACHI F.OKA 《China Ocean Engineering》 SCIE EI 1998年第4期453-465,共13页
Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m ... Great interest has been aroused on deeply-situated Osaka clay since Kobe Earthquake in 1994. In this paper is presented the analysis on the results of a series of lab tests on Osaka clay situated from 100 m to 1500 m under the ground. The wave velocity method, bender element method, LDT and the formula derived by the authors are used, focus is put on the pre-failure mechanical behavior of the clay. The analysis shows that, (i) pore-pressure coefficient B is less than 1.0, (ii) the relationship between shear modulus and Poisson's ratio is not in agreement with that reported before, (iii) the modulus measured with LDT is still less than that measured with bender element method, and (iv) there are two threshold strains, within which the clay can be considered as elastic, and both of them are larger than that reported before. 展开更多
关键词 pre-failure behavior natural clays wave velocity method bender element LDT
在线阅读 下载PDF
Gradation equation of coarse-grained soil and its applicability 被引量:4
12
作者 WU Er-lu ZHU Jun-gao +2 位作者 CHEN Ge BAO Meng-die GUO Wan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期911-919,共9页
Gradation equation is one way to describe the gradation of coarse-grained soil conveniently,exactly and quantitatively.With the gradation equation,the influence of gradation on the mechanical behaviors of coarse-grain... Gradation equation is one way to describe the gradation of coarse-grained soil conveniently,exactly and quantitatively.With the gradation equation,the influence of gradation on the mechanical behaviors of coarse-grained soil can be expressed quantitatively.A new gradation equation with a parameter is proposed.The basic properties and applicability of the new equation are studied.The results show that the proposed equation has the applicability to express coarse-grained soil gradation(CSG),and the range of the parameter β is found to be 0<β<1.The value ofbdetermines the gradation curve shape.If β>0.5,the gradation curve is sigmoidal,otherwise the gradation curve is hyperbolic.For well graded gradations,the parameter has the value of 0.13<β<1.Several CSGs used in domestic and foreign earth-rockfill dams are probed,and the value of the parameterbfalls in the range of 0.18 to 0.97.The investigation of the range of β is of value to guide the design for CSG of earth-rockfill dam. 展开更多
关键词 gradation curve gradation equation coarse-grained soil APPLICABILITY
在线阅读 下载PDF
Research on shape optimization of CSG dams 被引量:4
13
作者 Xin CAI Ying-li WU +1 位作者 Jian-gang YI Yu MING 《Water Science and Engineering》 EI CAS 2011年第4期445-454,共10页
The multi-objective optimization method was used for shape optimization of cement sand and gravel (CSG) dams in this study. The economic efficiency, the sensitivities of maximum horizontal displacement and maximum s... The multi-objective optimization method was used for shape optimization of cement sand and gravel (CSG) dams in this study. The economic efficiency, the sensitivities of maximum horizontal displacement and maximum settlement of the dam to water level changes, the overall stability, and the overall strength security were taken into account during the optimization process. Three weight coefficient selection schemes were adopted to conduct shape optimization of a dam, and the case studies lead to the conclusion that both the upstream-and downstream dam slope ratios for the optimal cross-section equal 1:0.7, which is consistent with the empirically observed range of 1:0.6 to 1;0.8 for the upstream and downstream dam slope ratios of CSG dams. Therefore, the present study is of certain reference value for designing CSG dams. 展开更多
关键词 CSG dam shape optimization sensitivity ANALYSIS
在线阅读 下载PDF
Blast-induced ground vibration prediction in granite quarries:An application of gene expression programming,ANFIS,and sine cosine algorithm optimized ANN 被引量:6
14
作者 Abiodun Ismail Lawal Sangki Kwon +1 位作者 Olaide Sakiru Hammed Musa Adebayo Idris 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期265-277,共13页
Blasting of rocks has intrinsic environmental impacts such as ground vibration,which can interfere with the safety of lives and property.Hence,accurate prediction of the environmental impacts of blasting is imperative... Blasting of rocks has intrinsic environmental impacts such as ground vibration,which can interfere with the safety of lives and property.Hence,accurate prediction of the environmental impacts of blasting is imperative as the empirical models are not accurate as evident in the literature.Therefore,there is need to consider some robust predictive models for accurate prediction results.Gene expression programming(GEP),adaptive neuro-fuzzy inference system(ANFIS),and sine cosine algorithm optimized artificial neural network(SCA-ANN)models are proposed for predicting the blast-initiated ground vibration in five granite quarries.The input parameters into the models are the distance from the point of blasting to the point of measurement(D),the weight of charge per delay(W),rock density(q),and the Schmidt rebound hardness(SRH)value while peak particle velocity(PPV)is the targeted output.100 datasets were used in developing the proposed models.The performance of the proposed models was examined using the coefficient of determination(R2)and error analysis.The R2 values obtained for the GEP,ANFIS,and SCA-ANN models are 0.989,0.997,and 0.999,respectively,while their errors are close to zero.The proposed models are compared with an empirical model and are found to outperform the empirical model. 展开更多
关键词 Artificial intelligence BLASTING Rock density Comminution Environmental impacts Sensitivity analysis
在线阅读 下载PDF
Undrained monotonic and cyclic behavior of sand-ground rubber mixtures 被引量:2
15
作者 Shariatmadari N Karimpour-Fard M Shargh A 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期541-553,共13页
In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic a... In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage. 展开更多
关键词 Ground rubber tire crumbs liquefaction resistance hollow cylinder torsional apparatus monotonic and cyclic behaviour
在线阅读 下载PDF
Performance analysis of empirical models for predicting rock mass deformation modulus using regression and Bayesian methods 被引量:2
16
作者 Adeyemi Emman Aladejare Musa Adebayo Idris 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1263-1271,共9页
Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.T... Deformation modulus of rock mass is one of the input parameters to most rock engineering designs and constructions.The field tests for determination of deformation modulus are cumbersome,expensive and time-consuming.This has prompted the development of various regression equations to estimate deformation modulus from results of rock mass classifications,with rock mass rating(RMR)being one of the frequently used classifications.The regression equations are of different types ranging from linear to nonlinear functions like power and exponential.Bayesian method has recently been developed to incorporate regression equations into a Bayesian framework to provide better estimates of geotechnical properties.The question of whether Bayesian method improves the estimation of geotechnical properties in all circumstances remains open.Therefore,a comparative study was conducted to assess the performances of regression and Bayesian methods when they are used to characterize deformation modulus from the same set of RMR data obtained from two project sites.The study also investigated the performance of different types of regression equations in estimation of the deformation modulus.Statistics,probability distributions and prediction indicators were used to assess the performances of regression and Bayesian methods and different types of regression equations.It was found that power and exponential types of regression equations provide a better estimate than linear regression equations.In addition,it was discovered that the ability of the Bayesian method to provide better estimates of deformation modulus than regression method depends on the quality and quantity of input data as well as the type of the regression equation. 展开更多
关键词 Deformation modulus Rock mass Regression equation Bayesian method Performance analysis Rock mass rating(RMR)
在线阅读 下载PDF
Experimental study of the bearing capacity of a drainage pipe pile under vacuum consolidation 被引量:2
17
作者 Xiao-wu TANG Wei-kang LIN +2 位作者 Yuan ZOU Jia-xin LIANG Wen-fang ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第8期639-651,共13页
In this study,we propose a drainage pipe pile under vacuum consolidation to integrate foundation treatment and pile foundation engineering in soft soil areas.To study its bearing capacity characteristics and foundatio... In this study,we propose a drainage pipe pile under vacuum consolidation to integrate foundation treatment and pile foundation engineering in soft soil areas.To study its bearing capacity characteristics and foundation treatment performance,single pile static load tests,vane shear tests,and water content tests were carried out for ordinary piles,perforated piles,and drainage pipe piles under conditions of static and vacuum consolidation.Based on the results,the concept of strong and weak reinforcement areas was proposed and used for bearing capacity prediction.The results showed that the drainage pipe pile did not become silted under vacuum consolidation.The single pile bearing capacity was much higher than that of an ordinary pile,and the pile side friction was exerted mainly in the middle and lower parts.Good results were achieved using the shear strength at the junction of the strong and weak reinforcement areas to estimate the ultimate bearing capacity of a single pile.This study provided important insights into the design and construction of drainage pipe piles in a soft soil foundation. 展开更多
关键词 Drainage pipe pile Soft soil CONSOLIDATION Bearing capacity Foundation treatment
原文传递
Numerical analysis of the influence of a river on tunnelling-induced ground deformation in soft soil 被引量:3
18
作者 Jia-xin LIANG Xiao-wu TANG +2 位作者 Tian-qi WANG Yu-hang YE Ying-jing LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第7期564-578,共15页
When tunnels are constructed in coastal cities,they will inevitably undercross a river.Exploring the influence of rivers on tunnelling-induced deformation in costal soft soil is of great significance for controlling e... When tunnels are constructed in coastal cities,they will inevitably undercross a river.Exploring the influence of rivers on tunnelling-induced deformation in costal soft soil is of great significance for controlling excessive settlement and protecting surrounding buildings.This paper presents a case study of twin tunnels undercrossing a river in soft soil in Hangzhou,China.The soft soil of Hangzhou refers to cohesive soil in a soft plastic or fluid plastic state with high natural water content,high compressibility,low bearing capacity,and low shear strength.Considering the influence of the river,the research region was divided into two parts,inside and outside the river-affected area,based on monitoring data of the Zizhi Tunnel.The development law of surface settlement is divided into three stages.In the first and second stages,the surface settlement within and outside the river-affected area showed a similar trend:the settlement increased and the growth rate of settlement in the second stage was smaller within the river-affected area.In the third stage,the surface settlement continued to increase within the river-affected area,while it converged outside the river-affected area.Within the river-affected area,there was an asynchronization of the sinking rate and stability of vault settlements and surface settlements.A numerical model was established by simulating different reinforcements of the tunnel.The numerical model revealed that the ground movement is influenced by the distribution and amount of the excess pore water pressure.The excess pore pressure was concentrated mostly in the range of 1.0H_(t)-3.0H_(t)(H_(t) is the tunnel height)before the tunnel face,especially within the river-affected area.Inside the river-affected area,the dissipation of excess pore water pressure needs more time,leading to slow stabilization of surface settlement.When undercrossing a river,a cofferdam is necessary to reduce excessive ground deformation by dispersing the distribution of excess pore water pressure. 展开更多
关键词 TUNNELLING Ground deformation Numerical analysis REINFORCEMENT
原文传递
Laboratory-scale investigation of the material distribution characteristics of landslide dams in U-shaped valleys 被引量:1
19
作者 JIAN Fu-xian CAI Zheng-yin GUO Wan-li 《Journal of Mountain Science》 SCIE CSCD 2023年第3期688-704,共17页
Material distribution characteristics during sliding and depositing is particularly significative to investigate the internal structure and spatial variation of landslide dams,which are fundamentally determining the m... Material distribution characteristics during sliding and depositing is particularly significative to investigate the internal structure and spatial variation of landslide dams,which are fundamentally determining the mechanical and hydraulic behavior and the susceptibility to cause dam failure.However,limited by longevity shortages and special geographic environments,the material distribution characteristics and their formation mechanisms are difficult to observe in the field.Therefore,an experimental apparatus modeling a landslide dam was developed in this paper,designing three sampling methods with two valley states.The internal deposit characteristics,void ratio variation and relative content of the particle size range(PSR)were analyzed,and the mechanics of deposit structure were also delicately ascertained.The results indicate that granular material deposited in valley shows a structure of inverse grain size accumulation in both vertical and horizontal directions,exhibiting spatial variability of particle gradation and void ratio.The characteristic PSR decreases from 22-30 mm in the two-dimensional state to 10-14 mm in the threedimensional state.Vibration excitation and vibration sieve are the intrinsic mechanisms of granular flow segregation,intrinsically inducing the formation of inverse grading deposit structures.Consequently,spatial variability in size is mainly trig gered by segregation,whereas coarse particle content and deposition boundaries merely exacerbate the difference degree. 展开更多
关键词 Landslide dam IInverse grading structure Granular flow segregation Material spatial variability Deposit characteristics
原文传递
Evaluation of the impact of commodity price change on mine plan of underground mining 被引量:2
20
作者 Salama Abubakary Nehring Micah Greberg Jenny 《International Journal of Mining Science and Technology》 CSCD 2015年第3期375-382,共8页
Fluctuations in commodity prices should influence mining operations to continually update and adjust their mine plans in order to capture additional value under new market conditions. One of the adjustments is the cha... Fluctuations in commodity prices should influence mining operations to continually update and adjust their mine plans in order to capture additional value under new market conditions. One of the adjustments is the change in production sequencing. This paper seeks to present a method for quantifying the net present value(NPV) that may be directly attributed to the change in commodity prices. The evaluation is conducted across ten copper price scenarios. Discrete event simulation combined with mixed integer programming was used to attain a viable production strategy and to generate optimal mine plans. The analysis indicates that an increase in prices results in an increased in the NPV from$96.57M to $755.65M. In an environment where mining operations must be striving to gain as much value as possible from the rights to exploit a finite resource, it is not appropriate to keep operating under the same mine plan if commodity prices alter during the course of operations. 展开更多
关键词 Mine planning Underground mining Commodity price Discrete event simulation Mixed integer programming
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部