The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation cred...The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation credibility. In this paper, the hydrocarbon accumulation system is evaluated quantitatively by establishing a hierarchy structure model based on an analytical hierarchy process. The hydrocarbon accumulation system of a higher exploration degree is selected as a calibration area and its hydrocarbon accumulation coefficient can be calculated using methods of hydrocarbon generation potential and reservoir-scale sequence. The hydrocarbon accumulation coefficient of a petroleum accumulation system can be gained by analogy of reservoir forming comprehensive evaluation results with the calibration area. The hydrocarbon accumulation coefficient of each petroleum accumulation system in the upper reservoir-forming combination of the Liaohe Western Sag can be obtained with this method. Practice shows that using the analytical hierarchy process to quantitatively evaluate the hydrocarbon accumulation system and then quantitatively predict the hydrocarbon accumulation coefficient decreases the influence of human factors in resources evaluation, and makes the resources assessment more objective and closer to the actual geological condition.展开更多
Natural gases were widely distributed in the Jiyang Depression with complicated component composition, and it is difficult to identify their genesis. Based on investigation of gas composition, carbon isotope ratios, l...Natural gases were widely distributed in the Jiyang Depression with complicated component composition, and it is difficult to identify their genesis. Based on investigation of gas composition, carbon isotope ratios, light hydrocarbon properties, as well as geological analysis, natural gases in the Jiyang Depression are classified into two types, one is organic gas and the other is abiogenic gas. Abiogenic gas is mainly magmatogenic or mantlederived CO2. Organic gases are further divided into coaltype gas, oil-type gas, and biogas according to their kero- gen types and formation mechanisms. The oil-type gases are divided into mature oil-type gas (oil-associated gas) and highly mature oil-type gas. The highly mature oil-type gases can be subdivided into oil-cracking gas and kerogen thermal degradation gas. Identification factors for each kind of hydrocarbon gas were summarized. Based on genesis analysis results, the genetic types of gases buried in different depths were discussed. Results showed that shallow gases (〈1,500 m) are mainly mature oil-type gases, biogas, or secondary gases. Secondary gases are rich in methane because of chromatographic separation during migration and secondary biodegradation. Secondary biodegradation leads to richness of heavy carbon isotope ratios in methane and propane. Genesis of middle depth gases (1,500-3,500 m) is dominated by mature oil-type gases.Deep gases (3,500-5,500 m) are mainly kerogen thermal degradation gas, oil-cracking gas, and coal-type gas.展开更多
Based on the study on electromagnetic field migration by Zhdanov, we have proposed an improved method for the weak points in the research. Firstly, the initial background resistivity should be determined by using 1-D ...Based on the study on electromagnetic field migration by Zhdanov, we have proposed an improved method for the weak points in the research. Firstly, the initial background resistivity should be determined by using 1-D inversion results. Then in the process of continuation, the results are corrected and calculated layer by layer by the iteration method, so that more exact resistivity can be obtained. Secondly, an improved algorithm for finite-difference equation is studied. According to the property of electromagnetic migration field, the algorithm is designed by means of grids varying with geometric progression in the longitudinal direction. Being improved by the techniques mentioned above, better results are obtained by the new method, which has been verified by both the theory model and practical data.展开更多
1 Introduction In early oil and gas exploration in jiyang depression stage, abnormal gas logging and oil and gas shows are frequently seen in the period of the shale. Most wells obtain commercial oil flow, such as Wel...1 Introduction In early oil and gas exploration in jiyang depression stage, abnormal gas logging and oil and gas shows are frequently seen in the period of the shale. Most wells obtain commercial oil flow, such as Well Luo42, xinyishen9 in zhanhua sag and Well he88 in dongying sag, shows great potential for exploration of fractured shale oil.展开更多
基金supported by the Foundation Projectof State Key Laboratory of Petroleum Resources and Prospecting (PRPDX2008-05)the "973" National Key Basic Research Program (2006CB202308)
文摘The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation credibility. In this paper, the hydrocarbon accumulation system is evaluated quantitatively by establishing a hierarchy structure model based on an analytical hierarchy process. The hydrocarbon accumulation system of a higher exploration degree is selected as a calibration area and its hydrocarbon accumulation coefficient can be calculated using methods of hydrocarbon generation potential and reservoir-scale sequence. The hydrocarbon accumulation coefficient of a petroleum accumulation system can be gained by analogy of reservoir forming comprehensive evaluation results with the calibration area. The hydrocarbon accumulation coefficient of each petroleum accumulation system in the upper reservoir-forming combination of the Liaohe Western Sag can be obtained with this method. Practice shows that using the analytical hierarchy process to quantitatively evaluate the hydrocarbon accumulation system and then quantitatively predict the hydrocarbon accumulation coefficient decreases the influence of human factors in resources evaluation, and makes the resources assessment more objective and closer to the actual geological condition.
文摘Natural gases were widely distributed in the Jiyang Depression with complicated component composition, and it is difficult to identify their genesis. Based on investigation of gas composition, carbon isotope ratios, light hydrocarbon properties, as well as geological analysis, natural gases in the Jiyang Depression are classified into two types, one is organic gas and the other is abiogenic gas. Abiogenic gas is mainly magmatogenic or mantlederived CO2. Organic gases are further divided into coaltype gas, oil-type gas, and biogas according to their kero- gen types and formation mechanisms. The oil-type gases are divided into mature oil-type gas (oil-associated gas) and highly mature oil-type gas. The highly mature oil-type gases can be subdivided into oil-cracking gas and kerogen thermal degradation gas. Identification factors for each kind of hydrocarbon gas were summarized. Based on genesis analysis results, the genetic types of gases buried in different depths were discussed. Results showed that shallow gases (〈1,500 m) are mainly mature oil-type gases, biogas, or secondary gases. Secondary gases are rich in methane because of chromatographic separation during migration and secondary biodegradation. Secondary biodegradation leads to richness of heavy carbon isotope ratios in methane and propane. Genesis of middle depth gases (1,500-3,500 m) is dominated by mature oil-type gases.Deep gases (3,500-5,500 m) are mainly kerogen thermal degradation gas, oil-cracking gas, and coal-type gas.
文摘Based on the study on electromagnetic field migration by Zhdanov, we have proposed an improved method for the weak points in the research. Firstly, the initial background resistivity should be determined by using 1-D inversion results. Then in the process of continuation, the results are corrected and calculated layer by layer by the iteration method, so that more exact resistivity can be obtained. Secondly, an improved algorithm for finite-difference equation is studied. According to the property of electromagnetic migration field, the algorithm is designed by means of grids varying with geometric progression in the longitudinal direction. Being improved by the techniques mentioned above, better results are obtained by the new method, which has been verified by both the theory model and practical data.
文摘1 Introduction In early oil and gas exploration in jiyang depression stage, abnormal gas logging and oil and gas shows are frequently seen in the period of the shale. Most wells obtain commercial oil flow, such as Well Luo42, xinyishen9 in zhanhua sag and Well he88 in dongying sag, shows great potential for exploration of fractured shale oil.