Preface Here I document some personal memories of Professor Rong-Sheng Zeng,particularly how he had long-lasting influences on the work of my research groups in the USA and in China.The narrative directly crosses poli...Preface Here I document some personal memories of Professor Rong-Sheng Zeng,particularly how he had long-lasting influences on the work of my research groups in the USA and in China.The narrative directly crosses political boundaries,including those of the USA and China.Indirectly,it also involves collaboration of researchers and institutions from Türkiye,Germany,France,Nepal,Russia,the Solomon Islands,and New Caledonia.Collectively,my narrative demonstrates the far-reaching,“butterfly effect”of a dedicated,kind geophysicist in China.展开更多
A large number of unconventional investigations have been implemented, tested, and validated in the field of microgeophysics, with the aim being to solve specific diagnostic and/or monitoring problems regarding civil ...A large number of unconventional investigations have been implemented, tested, and validated in the field of microgeophysics, with the aim being to solve specific diagnostic and/or monitoring problems regarding civil engineering and cultural heritage studies. The investigations were carried out using different tomographic 2D and 3D approaches as well as different energy sources, namely sonic, ultrasonic and electromagnetic (radar) waves, electric potential fields, and infrared thermography. Many efforts have been made to modify instruments and procedures in order to improve the resolution of the surveys as well as to greatly reduce the time of the measurements without any loss of information. The main new methodologies here discussed are the sonic imprint, the global tomographic traveltime, the electrical resistivity tomography, and the control of external films (patinas) grown on stone monuments. The results seem to be very promising and suggest that it is the moment to dedicate time and effort to this new branch of geophysics, so that these methodologies can be used even more to diagnose, monitor, and safeguard not only engineering buildings and large structures but also ancient monuments and cultural artifacts, like pottery, statues, etc..展开更多
Soil is a heterogeneous medium which consist of liquid, solid, and gaseous phases. The solid and liquid phases play an essential role in soil spontaneous electrical phenomena and in behaviour of electrical fields, art...Soil is a heterogeneous medium which consist of liquid, solid, and gaseous phases. The solid and liquid phases play an essential role in soil spontaneous electrical phenomena and in behaviour of electrical fields, artificially created in soil. Soil electrical properties are the parameters of natural and artificially created electrical fields in soils and influenced by distribution of mobile electrical charges, mostly inorganic ions, in soils. Geophysical method of electrical resistivity was used for measuring soil electrical properties and tested in different soil studies. Laboratory tests were performed for the numbers of clayey sandy soil samples taken from Batu Uban area. The empirical correlations between electrical parameter, percentage of liquid limit, plastic limit, plasticity index, moisture content and effective soil cohesion were obtained via curvilinear models. The ranges of the soil samples are changed between 229 Ωm to 927 Ωm for resistivity (ρ), 6.01 kN/m2 to 14.27 kN/m2 for effective soil cohesion (C'), 35.08 kN/m2 to 51.47 kN/m2 for internal fiction angle (?'), 38% to 88% for moisture content (W), 33% to 78% for liquid limit (WL), 21% to 43% for plastic limit (Wp) and 11% to 35% for plasticity index (PI). These empirical correlations model developed in this study provides a very useful tool to relate electrical resistivity with effective cohesion, internal friction angle (strength), void ratio, porosity, degree of saturation, moisture content, liquid limit, plastic limit and plasticity index in context of medium-grained of clayey sandy soil that is, its fluid behaviours.展开更多
For city planning and reducing potential earthquake risk,it’s necessary to detect the information of the buried faults in an urban area especially,including the location and activities.An integrated technique with ge...For city planning and reducing potential earthquake risk,it’s necessary to detect the information of the buried faults in an urban area especially,including the location and activities.An integrated technique with geophysical and geological methods,including the shallow seismic reflection profile,electrical resistivity measurement,geologic borehole section,and exploration trench,was used to detect the Chengnanhe fault,which is one of the two main faults passing through the Weihai urban area in Shandong province,China.The results show that it is a normal fault striking with E-W direction,and it is relatively inactive and stable.By using the thermoluminescence(TL)dating,we found that the Chengnanhe fault initiated in mid-Pleistocene and there was no offset after late Pleistocene.Such an integrated technique with multiple geological and geophysical methods provides a significant assessment of earthquake risk for city planning in urban areas.展开更多
The presence of hard rock in Mount Betung has caused the misalignment of the groundwater aquifers,and resulted in many drilling failures for groundwater.An integrated geophysics method using gravity survey and Geoelec...The presence of hard rock in Mount Betung has caused the misalignment of the groundwater aquifers,and resulted in many drilling failures for groundwater.An integrated geophysics method using gravity survey and Geoelectric Vertical Electrical Soundings(VES)were conducted to study the effect of basement and hard rock on groundwater prospects.From the gravity method,38 mapping points were carried out randomly,with a distance of 1-2 km in-between.Meanwhile,from the geoelectric method,51 VES points were acquired at the foot of Mount Betung.The acquisition was conducted with a Schlumberger configuration with AB/2=1 m to 250 m.The results show the Bouguer Anomaly in the west is 50-68 mgal due to the presence of hard rock in Mount Betung.This anomaly responds to relatively shallow hard rocks near surface.Hard rocks composed of andesite and breccia normally present at the depth of 5-180 m during well construction.Resistivity isopach mapping from VES data(at AB/2=50 m,100 m,and 150 m)shows the dominant constituents of hard rock.Fractures in hard rock contribute to secondary porosity,which could be a prospect zone that transmit groundwater.This finding shows that the fractures are randomly scattered,causing several well failures that have been worked.Furthermore,the fractures in the hard rock at the foot of Mount Betung acts as conduits between recharge at Mount Betung and the aquifer in the Bandar Lampung Basin.展开更多
A selection of a number of geophysical methods to solve different geological, geodynamical, environmental, archaeological and other problems usually has no theoretical substantiation. The solution to this “four color...A selection of a number of geophysical methods to solve different geological, geodynamical, environmental, archaeological and other problems usually has no theoretical substantiation. The solution to this “four color” mathematical problem is able to assume that two independent geophysical methods are sufficient theoretically to characterize the geological-geophysical peculiarities of the area under study.展开更多
The Dialafara area is part of the highly endowed Kédougou-Kéniéba Inlier (KKI), West-Malian gold belt, which corresponds to a Paleoproterozoic window through the West African Craton (WAC). This study pr...The Dialafara area is part of the highly endowed Kédougou-Kéniéba Inlier (KKI), West-Malian gold belt, which corresponds to a Paleoproterozoic window through the West African Craton (WAC). This study presents, first of all, an integration of geophysical data interpretation with litho-structural field reconnaissance and then proposes a new litho-structural map of the Dialafara area. The Dialafara area shows a variety of lithology characterized by volcanic and volcano-sedimentary units, metasediments and plutonic intrusion. These lithologies were affected by a complex superposition of structures of unequal importance defining three deformation phases (D<sub>D1</sub> to D<sub>D3</sub>) under ductile to brittle regimes. These features permit to portray a new litho-structural map, which shows that the Dialafara area presents a more complex lithological and structural context than the one presented in regional map of the KKI. This leads to the evidence that this area could be a potential site for exploration as it is situated between two world-class gold districts.展开更多
Comprehensive investigations along the Gyirong-Lugu-Sangehu geophysical profile in the western Xizang Plateau are presented. Analysis and interpretation of the lithospheric structure resulted in setting up of the geop...Comprehensive investigations along the Gyirong-Lugu-Sangehu geophysical profile in the western Xizang Plateau are presented. Analysis and interpretation of the lithospheric structure resulted in setting up of the geophysical methods and marks for the division of tectonic units in the lithospheric structure. Comprehensive geophysical survey in the remote west of Xizang is reported and some reliable geophysical evidence for deep structure division in the study region is provided. These lay a solid basis for probing into the mechanism of the Xizang Plateau uplift and geodynamics.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ...Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.展开更多
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G...In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.展开更多
INTRODUCTION.On January 7,2025,at 9:05 AM BJT,a MS6.8 earthquake(CENC epicenter:28.50°N,87.45°E)struck Dingri County,Xizang Province(hereinafter referred to as the Dingri mainshock).The inferred moment magni...INTRODUCTION.On January 7,2025,at 9:05 AM BJT,a MS6.8 earthquake(CENC epicenter:28.50°N,87.45°E)struck Dingri County,Xizang Province(hereinafter referred to as the Dingri mainshock).The inferred moment magnitude,based on regional/teleseismic waveform inversion and back-projection,is approximately MW7.1.Focal mechanism solutions,aftershock distribution,and field surveys indicate that the Dingri mainshock was a normal-faulting event,with a nearly north-south strike and a westward-dipping fault plane.展开更多
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa...This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.展开更多
Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppr...Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppritz equations to estimate Young's modulus,which can introduce cumulative errors and reduce the accuracy of inversion results.To address these issues,this paper introduces the analytical solution of the Zoeppritz equation into the inversion process.The equation is re-derived and expressed in terms of Young's modulus,Poisson's ratio,and density.Within the Bayesian framework,we construct an objective function for the joint inversion of PP and PS waves.Traditional gradient-based algorithms often suffer from low precision and the computational complexity.In this study,we address limitations of conventional approaches related to low precision and complicated code by using Circle chaotic mapping,Levy flights,and Gaussian mutation to optimize the quantum particle swarm optimization(QPSO),named improved quantum particle swarm optimization(IQPSO).The IQPSO demonstrates superior global optimization capabilities.We test the proposed inversion method with both synthetic and field data.The test results demonstrate the proposed method's feasibility and effectiveness,indicating an improvement in inversion accuracy over traditional methods.展开更多
In this study,we developed a high-resolution(3 arcsec,approximately 90 m)V_(S30) map and associated open-access dataset for the 140 km×200 km region affected by the January 2025 M6.8 Dingri Xizang,China earthquak...In this study,we developed a high-resolution(3 arcsec,approximately 90 m)V_(S30) map and associated open-access dataset for the 140 km×200 km region affected by the January 2025 M6.8 Dingri Xizang,China earthquake.This map provides a significantly finer resolution compared to existing V_(S30) maps,which typically use a 30 arcsec grid.The V_(S30) values were estimated using the Cokriging-based V_(S30) proxy model(SCK model),which integrates V_(S30) measurements as primary constraints and utilizes topographic slope as a secondary parameter.The findings indicate that the V_(S30) values range from 200 to 250 m/s in the sedimentary deposit areas near the earthquake’s epicenter and from 400 to 600 m/s in the surrounding mountainous regions.This study showcases the capability of the SCK model to efficiently generate V_(S30) estimations across various spatial resolutions and demonstrates its effectiveness in producing reliable estimations in data-sparse regions.展开更多
A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques inclu...A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.展开更多
Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tecto...Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities.In the big data era,the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks.Significant progress has been made in creating specialized databases,compiling comprehensive datasets,and utilizing data analytics to address complex scientific questions.However,many existing databases are inadequate in meeting the specific requirements of metamorphic research,resulting from a substantial amount of valuable data remaining uncollected.Therefore,constructing new databases that can cope with the development of the data era is necessary.This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this.Accordingly,several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified,aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research.展开更多
Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(...Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(MLT)and Abu Simbel(ABS)Egyptian geomagnetic observatories were processed and found to be of good quality.In this study,Egyptian observatory data were tested during both quiet and disturbed events and compared with data from INTERMAGNET observatories worldwide at different latitudes and within a narrow range of longitudes in both hemispheres.This study investigated the relationships between magnetic field components from Egyptian observatories and those from INTERMAGNET observatories using graphical representations of the X components;Pearson’s correlation for the X,Y,Z,and F components;cross-correlation for the X component;and wavelet coherence for the F component.The results of this study showed a high correlation between Egyptian observatories and all utilized INTERMAGNET stations,except those located at high latitudes,during both quiet and disturbed events.Additionally,the study confirmed the observed consistency between Egyptian observatories and selected INTERMAGNET stations.Therefore,Egyptian observatories can feasibly fill the gap in the Middle East and North Africa.展开更多
基金supported by many grants from the National Science Foundation of the USA and the Natural Science Foundation of China under grant 91858205.
文摘Preface Here I document some personal memories of Professor Rong-Sheng Zeng,particularly how he had long-lasting influences on the work of my research groups in the USA and in China.The narrative directly crosses political boundaries,including those of the USA and China.Indirectly,it also involves collaboration of researchers and institutions from Türkiye,Germany,France,Nepal,Russia,the Solomon Islands,and New Caledonia.Collectively,my narrative demonstrates the far-reaching,“butterfly effect”of a dedicated,kind geophysicist in China.
基金supported by the "Centro per la Progettazione ed il Restauro" of the Sicilian region
文摘A large number of unconventional investigations have been implemented, tested, and validated in the field of microgeophysics, with the aim being to solve specific diagnostic and/or monitoring problems regarding civil engineering and cultural heritage studies. The investigations were carried out using different tomographic 2D and 3D approaches as well as different energy sources, namely sonic, ultrasonic and electromagnetic (radar) waves, electric potential fields, and infrared thermography. Many efforts have been made to modify instruments and procedures in order to improve the resolution of the surveys as well as to greatly reduce the time of the measurements without any loss of information. The main new methodologies here discussed are the sonic imprint, the global tomographic traveltime, the electrical resistivity tomography, and the control of external films (patinas) grown on stone monuments. The results seem to be very promising and suggest that it is the moment to dedicate time and effort to this new branch of geophysics, so that these methodologies can be used even more to diagnose, monitor, and safeguard not only engineering buildings and large structures but also ancient monuments and cultural artifacts, like pottery, statues, etc..
文摘Soil is a heterogeneous medium which consist of liquid, solid, and gaseous phases. The solid and liquid phases play an essential role in soil spontaneous electrical phenomena and in behaviour of electrical fields, artificially created in soil. Soil electrical properties are the parameters of natural and artificially created electrical fields in soils and influenced by distribution of mobile electrical charges, mostly inorganic ions, in soils. Geophysical method of electrical resistivity was used for measuring soil electrical properties and tested in different soil studies. Laboratory tests were performed for the numbers of clayey sandy soil samples taken from Batu Uban area. The empirical correlations between electrical parameter, percentage of liquid limit, plastic limit, plasticity index, moisture content and effective soil cohesion were obtained via curvilinear models. The ranges of the soil samples are changed between 229 Ωm to 927 Ωm for resistivity (ρ), 6.01 kN/m2 to 14.27 kN/m2 for effective soil cohesion (C'), 35.08 kN/m2 to 51.47 kN/m2 for internal fiction angle (?'), 38% to 88% for moisture content (W), 33% to 78% for liquid limit (WL), 21% to 43% for plastic limit (Wp) and 11% to 35% for plasticity index (PI). These empirical correlations model developed in this study provides a very useful tool to relate electrical resistivity with effective cohesion, internal friction angle (strength), void ratio, porosity, degree of saturation, moisture content, liquid limit, plastic limit and plasticity index in context of medium-grained of clayey sandy soil that is, its fluid behaviours.
基金the Special Fund of China Seismic Experimental Site(Nos.2019CSES0103,2018CESE0102 and 2016CESE0203)the National Natural Science Foundation of China(Nos.41630210,41674060,41974054,and 41974061)the“Active Faults Exploration and Seismic Hazard Assessment in Weihai City”funded by Weihai Municipal People's Government.
文摘For city planning and reducing potential earthquake risk,it’s necessary to detect the information of the buried faults in an urban area especially,including the location and activities.An integrated technique with geophysical and geological methods,including the shallow seismic reflection profile,electrical resistivity measurement,geologic borehole section,and exploration trench,was used to detect the Chengnanhe fault,which is one of the two main faults passing through the Weihai urban area in Shandong province,China.The results show that it is a normal fault striking with E-W direction,and it is relatively inactive and stable.By using the thermoluminescence(TL)dating,we found that the Chengnanhe fault initiated in mid-Pleistocene and there was no offset after late Pleistocene.Such an integrated technique with multiple geological and geophysical methods provides a significant assessment of earthquake risk for city planning in urban areas.
基金supported by grants from Indonesia’s National Research and Innovation Agency,Doctoral Dissertation Research scheme。
文摘The presence of hard rock in Mount Betung has caused the misalignment of the groundwater aquifers,and resulted in many drilling failures for groundwater.An integrated geophysics method using gravity survey and Geoelectric Vertical Electrical Soundings(VES)were conducted to study the effect of basement and hard rock on groundwater prospects.From the gravity method,38 mapping points were carried out randomly,with a distance of 1-2 km in-between.Meanwhile,from the geoelectric method,51 VES points were acquired at the foot of Mount Betung.The acquisition was conducted with a Schlumberger configuration with AB/2=1 m to 250 m.The results show the Bouguer Anomaly in the west is 50-68 mgal due to the presence of hard rock in Mount Betung.This anomaly responds to relatively shallow hard rocks near surface.Hard rocks composed of andesite and breccia normally present at the depth of 5-180 m during well construction.Resistivity isopach mapping from VES data(at AB/2=50 m,100 m,and 150 m)shows the dominant constituents of hard rock.Fractures in hard rock contribute to secondary porosity,which could be a prospect zone that transmit groundwater.This finding shows that the fractures are randomly scattered,causing several well failures that have been worked.Furthermore,the fractures in the hard rock at the foot of Mount Betung acts as conduits between recharge at Mount Betung and the aquifer in the Bandar Lampung Basin.
文摘A selection of a number of geophysical methods to solve different geological, geodynamical, environmental, archaeological and other problems usually has no theoretical substantiation. The solution to this “four color” mathematical problem is able to assume that two independent geophysical methods are sufficient theoretically to characterize the geological-geophysical peculiarities of the area under study.
文摘The Dialafara area is part of the highly endowed Kédougou-Kéniéba Inlier (KKI), West-Malian gold belt, which corresponds to a Paleoproterozoic window through the West African Craton (WAC). This study presents, first of all, an integration of geophysical data interpretation with litho-structural field reconnaissance and then proposes a new litho-structural map of the Dialafara area. The Dialafara area shows a variety of lithology characterized by volcanic and volcano-sedimentary units, metasediments and plutonic intrusion. These lithologies were affected by a complex superposition of structures of unequal importance defining three deformation phases (D<sub>D1</sub> to D<sub>D3</sub>) under ductile to brittle regimes. These features permit to portray a new litho-structural map, which shows that the Dialafara area presents a more complex lithological and structural context than the one presented in regional map of the KKI. This leads to the evidence that this area could be a potential site for exploration as it is situated between two world-class gold districts.
基金Project supported by National "Eighth Five-Year" Climbing Project.
文摘Comprehensive investigations along the Gyirong-Lugu-Sangehu geophysical profile in the western Xizang Plateau are presented. Analysis and interpretation of the lithospheric structure resulted in setting up of the geophysical methods and marks for the division of tectonic units in the lithospheric structure. Comprehensive geophysical survey in the remote west of Xizang is reported and some reliable geophysical evidence for deep structure division in the study region is provided. These lay a solid basis for probing into the mechanism of the Xizang Plateau uplift and geodynamics.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
基金supported by the National Natural Science Foundation of China(Grant No.U2342208)support from NSF/Climate Dynamics Award#2025057。
文摘Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.
基金supported by the Project of Stable Support for Youth Teams in Basic Research Field,Chinese Academy of Sciences(CASGrant No.YSBR-018)+2 种基金the B-type Strategic Priority Program of CAS(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42204165)the National Key Research and Development Program(Grant No.2022YFF0504400).
文摘In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.
基金supported by the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(No.2021230)supported by the National Natural Science Foundation of China(Nos.41922025,42204062)。
文摘INTRODUCTION.On January 7,2025,at 9:05 AM BJT,a MS6.8 earthquake(CENC epicenter:28.50°N,87.45°E)struck Dingri County,Xizang Province(hereinafter referred to as the Dingri mainshock).The inferred moment magnitude,based on regional/teleseismic waveform inversion and back-projection,is approximately MW7.1.Focal mechanism solutions,aftershock distribution,and field surveys indicate that the Dingri mainshock was a normal-faulting event,with a nearly north-south strike and a westward-dipping fault plane.
基金JSPS KAKENHI Grant Number16H06286 supports global GNSS ionospheric maps (TEC,ROTI,and detrended TEC maps) developed by the Institute for SpaceEarth Environmental Research (ISEE) of Nagoya Universitysupport of the 2024 JASSO Follow-up Research Fellowship Program for a 90-day visiting research at the Institute for Space-Earth Environmental Research (ISEE),Nagoya University+3 种基金the support received from Telkom University under the“Skema Penelitian Terapan Periode I Tahun Anggaran 2024”the Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation (No:092/SAM3/TE-DEK/2021)the National Institute of Information and Communications Technology (NICT) International Exchange Program 2024-2025(No.2024-007)support for a one-year visiting research at Hokkaido University
文摘This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.
基金supported by Fundamental Research Funds for the Central Universities,CHD300102264715National Key Research and Development Program of China under Grant 2021YFA0716902Natural Science Basic Research Program of Shaanxi 2024JCYBMS-199。
文摘Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppritz equations to estimate Young's modulus,which can introduce cumulative errors and reduce the accuracy of inversion results.To address these issues,this paper introduces the analytical solution of the Zoeppritz equation into the inversion process.The equation is re-derived and expressed in terms of Young's modulus,Poisson's ratio,and density.Within the Bayesian framework,we construct an objective function for the joint inversion of PP and PS waves.Traditional gradient-based algorithms often suffer from low precision and the computational complexity.In this study,we address limitations of conventional approaches related to low precision and complicated code by using Circle chaotic mapping,Levy flights,and Gaussian mutation to optimize the quantum particle swarm optimization(QPSO),named improved quantum particle swarm optimization(IQPSO).The IQPSO demonstrates superior global optimization capabilities.We test the proposed inversion method with both synthetic and field data.The test results demonstrate the proposed method's feasibility and effectiveness,indicating an improvement in inversion accuracy over traditional methods.
基金supported by the National Natural Science Foundation of China(No.42120104002).
文摘In this study,we developed a high-resolution(3 arcsec,approximately 90 m)V_(S30) map and associated open-access dataset for the 140 km×200 km region affected by the January 2025 M6.8 Dingri Xizang,China earthquake.This map provides a significantly finer resolution compared to existing V_(S30) maps,which typically use a 30 arcsec grid.The V_(S30) values were estimated using the Cokriging-based V_(S30) proxy model(SCK model),which integrates V_(S30) measurements as primary constraints and utilizes topographic slope as a secondary parameter.The findings indicate that the V_(S30) values range from 200 to 250 m/s in the sedimentary deposit areas near the earthquake’s epicenter and from 400 to 600 m/s in the surrounding mountainous regions.This study showcases the capability of the SCK model to efficiently generate V_(S30) estimations across various spatial resolutions and demonstrates its effectiveness in producing reliable estimations in data-sparse regions.
文摘A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region.
基金funded by the National Natural Science Foundation of China(No.42220104008)。
文摘Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities.In the big data era,the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks.Significant progress has been made in creating specialized databases,compiling comprehensive datasets,and utilizing data analytics to address complex scientific questions.However,many existing databases are inadequate in meeting the specific requirements of metamorphic research,resulting from a substantial amount of valuable data remaining uncollected.Therefore,constructing new databases that can cope with the development of the data era is necessary.This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this.Accordingly,several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified,aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research.
文摘Geomagnetic observatory data are crucial for all branches of geophysics because they can contribute to earthquake research by detecting anomalies in the Earth’s magnetic field.Recently,data records from the Misallat(MLT)and Abu Simbel(ABS)Egyptian geomagnetic observatories were processed and found to be of good quality.In this study,Egyptian observatory data were tested during both quiet and disturbed events and compared with data from INTERMAGNET observatories worldwide at different latitudes and within a narrow range of longitudes in both hemispheres.This study investigated the relationships between magnetic field components from Egyptian observatories and those from INTERMAGNET observatories using graphical representations of the X components;Pearson’s correlation for the X,Y,Z,and F components;cross-correlation for the X component;and wavelet coherence for the F component.The results of this study showed a high correlation between Egyptian observatories and all utilized INTERMAGNET stations,except those located at high latitudes,during both quiet and disturbed events.Additionally,the study confirmed the observed consistency between Egyptian observatories and selected INTERMAGNET stations.Therefore,Egyptian observatories can feasibly fill the gap in the Middle East and North Africa.