In the urban environment,subsurface contamination is caused by municipal solid waste(MSW)and industrial and agricultural discharges.About 2.01 billion tons of MSW is generated globally each year,most of which is dispo...In the urban environment,subsurface contamination is caused by municipal solid waste(MSW)and industrial and agricultural discharges.About 2.01 billion tons of MSW is generated globally each year,most of which is disposed of in landfills.Countries in Asia and Pacific regions account for 43%of global waste generation,while India and China account for 27.45%of global waste generation.Most of the landfills operated in South-Asian countries are non-sanitary,leading to the percolation of leachate in the subsurface.Conventional hydrogeological and geochemical methods are primary indicators and detect high levels of critical parameters near landfills,indicating subsurface contamination from leachate.展开更多
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote...Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.展开更多
The Central India Tectonic Zone (CITZ) marks the trace of a major suture zone along which the south Indian and the north Indian continental blocks were assembled through subduction-accretion- collision tectonics in ...The Central India Tectonic Zone (CITZ) marks the trace of a major suture zone along which the south Indian and the north Indian continental blocks were assembled through subduction-accretion- collision tectonics in the Mesoproterozoic. The CITZ also witnessed the major, plume-related, late Cretaceous Deccan volcanic activity, covering substantial parts of the region with continental flood basalts and associated magmatic provinces. A number of major fault zones dissect the region, some of which are seismically active. Here we present results from gravity modeling along five regional profiles in the CITZ, and combine these results with magnetotelluric (MT) modeling results to explain the crustal architecture. The models show a resistive (more than 2000 Ω. m) and a normal density (2.70 g/cm3) upper crust suggesting dominant tonalite-trondhjemite-granodiorite (TTG) composition. There is a marked correlation between both high-density (2.95 g/cm3) and low-density (2.65 g/cm3) regions with high conductive zones (〈80 Ω. m) in the deep crust. We infer the presence of an interconnected grain boundary network of fluids or fluid-hosted structures, where the conductors are associated with gravity lows. Based on the conductive nature, we propose that the lower crustal rocks are fluid reservoirs, where the fluids occur as trapped phase within minerals, fluid-filled porosity, or as fluid-rich structural conduits. We envisage that substantial volume of fluids were transferred from mantle into the lower crust through the younger plume-related Deccan volcanism, as well as the reactivation, fracturing and expulsion of fluids transported to depth during the Mesoproterozoic subduction tectonics. Migration of the fluids into brittle fault zones such as the Narmada North Fault and the Narmada South Fault resulted in generating high pore pressures and weakening of the faults, as reflected in the seismicity. This inference is also supported by the presence of broad gravity lows near these faults, as well as the low velocity in the lower crust beneath regions of recent major earthquakes within the CITZ.展开更多
The Aravalli-Delhi and Satpura Mobile Belts (ADMB and SMB) and the Eastern Ghat Mobile Belt (EGMB) in India form major Proterozoic mobile belts with adjoining cratons and contemporary basins. The most convincing f...The Aravalli-Delhi and Satpura Mobile Belts (ADMB and SMB) and the Eastern Ghat Mobile Belt (EGMB) in India form major Proterozoic mobile belts with adjoining cratons and contemporary basins. The most convincing features of the ADMB and the SMB have been the crustal layers dipping from both sides in opposite directions, crustal thickening ( -45 km) and high density and high conductivity rocks in upper/ lower crust associated with faults/thrusts. These observations indicate convergence while domal type re- flectors in the lower crust suggest an extensional rifting phase. In case of the SMB, even the remnant of the subducting slab characterized by high conductive and low density slab in lithospheric mantle up to - 120 km across the Purna-Godavari river faults has been traced which may be caused by fluids due to metamorphism. Subduction related intrusives of the SMB south of it and the ADMB west of it suggest N-S and E-W directed convergence and subduction during Meso-Neoproterozoic convergence. The simultaneous E-W conver- gence between the Bundelkhand craton and Marwar craton (Western Rajasthan) across the ADMB and the N-S convergence between the Bundelkhand craton and the Bhaodara and Dharwar cratons across the SMB suggest that the forces of convergence might have been in a NE SW direction with E-W and N-S compo- nents in the two cases, respectively. This explains the arcuate shaped collision zone of the ADMB and the SMB which are connected in their western part. The Eastern Ghat Mobile Belt (EGMB) also shows signatures orE -W directed Meso Neoproterozoic convergence with East Antarctica similar to ADMB in north India. Foreland basins such as Vindhyan (ADMB-SMB), and Kurnool (EGMB) Supergroups of rocks were formed during this convergence. Older rocks such as Aravalli (ADMB), Mahakoshal-Bijawar (SMB), and Cuddapah (EGMB) Supergroups of rocks with several basic/ultrabasic intrusives along these mobile belts, plausibly formed during an earlier episode of rifting during Paleo-Mesoproterozoic period. They are highly disturbed and deformed due to subsequent Meso-Neoproterozoic convergence. As these Paleoproterozoic basins are characterized by large scale basic/ultrabasic intrusives that are considerably wide spread, it is suggested that a plume/superplume might have existed under the Indian cratons at that time which was responsible for the breakup of these cratons. Further, the presence of older intrusives in these mobile belts suggests that there might have been some form of convergence also during Paleoproterozoic period.展开更多
The Precambrian shields and associated suture zones of the globe preserve important records of continental growth and destruction, the formation and closure of ocean basins, and the early evolution of the Earth in ter...The Precambrian shields and associated suture zones of the globe preserve important records of continental growth and destruction, the formation and closure of ocean basins, and the early evolution of the Earth in terms of tectonics, resources, and environment. They also offer critical clues on the nature and style of plate tectonics, mantle dynamics and crust-mantle interaction. In this thematic section of Geoscience Frontiers, a set of four contri- butions are assembled that provide a window to the mechanisms and processes in Precambrian shields and associated suture zones from a geological and geophysical perspective.展开更多
Direct current resistivity and ground penetrating radar surveys were employed to obtain the value of the resistivity and dielectric constant in the brine near the Barrow, Alaska. The geophysical surveys were undertake...Direct current resistivity and ground penetrating radar surveys were employed to obtain the value of the resistivity and dielectric constant in the brine near the Barrow, Alaska. The geophysical surveys were undertaken together with the permafrost drilling program for the measuring of the ground temperature regime and for the core sampling. The sampled cores were measured for their physical and chemical properties in the laboratory under different temperature conditions ((-60) to (20) ℃). Laboratory results support field observations and led to the development of a technique for distinguishing freshwater taliks and brine layers in permafrost. These methods were also employed in freshwater taliks near Council, Alaska. The electrical resistivity is a powerful and sensitive parameter for brine detection. However, the resistivity is a less sensitive indicator of the soil type or water content under highly saline conditions. High frequency dielectric constant is an ideal second parameter for the indication of the soil type, liquid water content and other physical properties. The imaginary part of the dielectric constant and resistivity have a significant dependence upon salinity, i.e. upon freezing temperature. The ground temperature regime and the freezing point of the brine layer are important parameters for studying the electric properties of permafrost terrain.展开更多
Although the SSA (singular spectral analysis) is a potential tool for analysing time series of different physical processes, the processing of large geophysical data set requires more time and is found to be computa...Although the SSA (singular spectral analysis) is a potential tool for analysing time series of different physical processes, the processing of large geophysical data set requires more time and is found to be computationally expansive. In particular for the SVD (singular value decomposition) of large trajectory matrix, the processing units require huge memory and high performance computing system. In the present work, we propose an alternative scheme based on WSSA (windowed singular spectral analysis), which is robust for analysing long data sets without losing any valuable low-frequency information contained in the data. The underlying scheme reduces the floating point operations in SVD computations as the size of the trajectory matrix is small in windowed processing. In order to test the efficiency, the authors applied the proposed method on two geophysical data sets i.e., the climatic record with 30,000 data points and seismic reflection trace with 8,000 data points. The authors have shown that without distorting any physical information, the low-frequency contents of the data are well preserved after the windowed processing in both the cases.展开更多
The Deccan Syneclise is considered to have significant hydrocarbon potential. However, significant hydrocarbon discoveries, particularly for Mesozoic sequences, have not been established through conventional explorati...The Deccan Syneclise is considered to have significant hydrocarbon potential. However, significant hydrocarbon discoveries, particularly for Mesozoic sequences, have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks. In this study, near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area. Soil samples were collected from favorable areas identified by integrated geophysical studies. The compositional and isotopic signatures of adsorbed gaseous hydrocarbons (methane through butane) were used as surface indicators of pe- troleum micro-seepages. An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons (C_1-C_4) and their carbon isotopes from the western part of Tapti graben, Deccan Syneclise, India. The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases. High concentrations of adsorbed thermogenic methane (C1 518 ppb) and ethane plus higher hydrocarbons (∑C2+ = 977 ppb) were observed. Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents. This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks, beneath Deccan Traps. The carbon isotopic composition of methane, ethane and propane ranges are from 22.5‰to -30.2‰ PDB, -18.0‰ to 27.1‰,, PDB and 16.9‰-32.1‰ PDB respectively, which are in thermogenic source. Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks. Prominent hydrocarbon concentra- tions were associated with dykes, lineaments and presented on thinner basaltic cover in the study area, which probably acts as channel for the micro-seepage of hydrocarbons.展开更多
The textural and mineralogical characteristics of subsurface sediments along with Ground Penetrating Radar (GPR) data collected along the Western margin of India were used to understand the depositional environments a...The textural and mineralogical characteristics of subsurface sediments along with Ground Penetrating Radar (GPR) data collected along the Western margin of India were used to understand the depositional environments and the provenance of sediments. Textural attributes such as mean, standard deviation, skewness and Kurtosis show fluctuations due to fluvio-marine interaction and it is well understood that the bottom sediments are enriched with muddy sand, which may be deposited by mean of tidal invasion. The abundance of very coarse silt to very fine sand indicates the prevalence of low energy environment. The Linear Discriminate Function analysis indicates the fluvio marine deposition of sediments under low energy condition. GPR data upto a depth of 5 m shows the stratigraphic sequences of very fine sands and coarse silt. Optically Stimulated Luminescence (OSL) dating of sediments implies that the tidal sediments had deposited between ~30 ± 1 and ~90 ± 4 years before Present. XRD studies results the dominance of K-feldspar and deficiency of clay minerals, indicating that most of the sediments are derived from hinterland. Studies indicate that the Provenance of sediments in the Mandvi area is not related to Indus delta even though a considerable part of Gulf sediments are deposited by the Indus River.展开更多
Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue,so the trained model cannot well generalize to the unseen data without calibrating the logs....Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue,so the trained model cannot well generalize to the unseen data without calibrating the logs.In this paper,we formulated the geophysical logs calibration problem and give its statistical explanation,and then exhibited an interpretable machine learning method,i.e.,Unilateral Alignment,which could align the logs from one well to another without losing the physical meanings.The involved UA method is an unsupervised feature domain adaptation method,so it does not rely on any labels from cores.The experiments in 3 wells and 6 tasks showed the effectiveness and interpretability from multiple views.展开更多
The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the fir...The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the first member of the Longmaxi Formation to the Wufeng Formation at the bottom of the Longmaxi Formation.Given this correlation and based on the logging electrical data,this study employs the wide-field electromagnetic method(WFEM)to experimentally detect the electrical characteristics of the deep shale gas target layer in the Yibin area of southern Sichuan.The study also tests the regularity and effectiveness of the electrical parameters for evaluating favorable areas of shale gas reservoirs.In terms of specific operation,the structural pattern of the study area is implemented based on the wide-field electromagnetic results and geological data for comprehensive analysis,which identifies the main hidden faults and their influence range on low resistance.The detailed spatial distribution of the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the target layer with a buried depth of 2000-5000m is described.This layer exhibits the characteristics of a continuous and stable distribution of organic shale.After verifying the subsequent electrical logging data,the electrical logging curve is found to be essentially consistent with the shape and trend of the wide-field resistivity curve.This consistency demonstrates the effectiveness of WFEM in detecting shale gas layers.展开更多
East Asia is a region characterized by a typical monsoon climate,which is accompanied by strong precipitation with complex spatiotemporal variability during summer.Previous works have emphasized the impact of tropical...East Asia is a region characterized by a typical monsoon climate,which is accompanied by strong precipitation with complex spatiotemporal variability during summer.Previous works have emphasized the impact of tropical signals on extreme summer precipitation over East Asia,but the roles of the mid-high latitude cyclones are still unclear.Using a reanalysis dataset,this study discloses the synergistic influences of anomalous signals from different latitudes on the extreme precipitation event in the Beijing-Tianjin-Hebei(BTH)region during the summer of 2023.The main conclusions are obtained as follows:the decreased sea ice density caused more Arctic cyclones to generate at positions further west in the Barents Sea and the west of the Kara Sea and then move southeast to East Asia in 2023.Furthermore,the synergistic influences of the outward Arctic cyclones and anomalous signals from middle and low latitudes are discussed.First,the significant northward jump of the Western Pacific Subtropical High(WPSH)provid-ed the favorable condition of large-scale background circulation for summer precipitation in the BTH region in 2023.In addition,the southward intrusion of the Arctic cyclones and the mid-latitude zonal wave trains transported massive cold air to the BTH region.Subsequently,the cold air masses met with the warm moist air carried by the landfall typhoon‘Doksuri’,which generated strong fronts and triggered the extreme precipitation on July 29.However,another severe typhoon,‘Kanu’,generated and moved northward from the tropical Pacific,which caused the further northward shift of the WPSH and the termination of this persistent extreme precipitation on August 1.展开更多
The discrepancy in the trends of the global zonal mean(GZM)intensity of the Hadley circulation(HCI)between reanalysis data and model simulations has been a problem for understanding the changes in HCI and the influenc...The discrepancy in the trends of the global zonal mean(GZM)intensity of the Hadley circulation(HCI)between reanalysis data and model simulations has been a problem for understanding the changes in HCI and the influence of external forcings.To understand the reason for this discrepancy,this study investigates the trends of intensity of regional HCI of the Northern Hemisphere over the eastern Pacific(EPA),western Pacific(WPA),Atlantic(ATL),Africa(AFR),the Indian Ocean(IDO),and residual area(RA),based on six reanalysis datasets and 13 CMIP6 models.In reanalysis data,the trends in regional HCI over EPA and ATL(WPA and AFR)contribute to(partially offset)the increasing trend in GZM HCI,while the trends in regional HCI over IDO are different in different reanalysis data.The CMIP6 models skillfully reproduce the trends in regional HCI over EPA,ATL,WPA,and AFR,but simulate notable decreasing trends in regional HCI over IDO,which is a key reason for the opposite trends in GZM HCI between reanalysis data and models.The discrepancy in IDO can be attributed to differences in the simulation of diabatic heating and zonal friction between reanalysis data and models.Optimal fingerprint analysis indicates that anthropogenic(ANT)and non-greenhouse gas(NOGHG)forcings are the dominant drivers of the HCI trends in the EPA and ATL regions.In the WPA(AFR)region,NOGHG(ANT)forcing serves as the primary driver.The findings contribute to improving the representation of regional HCI trends in models and improving the attribution of external forcings.展开更多
The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as...The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as strong reservoir anisotropy.These issues often lead to wellbore instability and gas logging anomalies during drilling.This study presents an integrated workflow that combines residual moveout correction using correlation-based dynamic time warping(CDTW),high-resolution seismic waveform indication inversion,and three-pressure prediction of jointing well-seismic data.Applied to the LT1 well block,the workflow effectively corrects anisotropic residual moveout in image gathers,leading to a signal strength increase of over 10%in frequency bands above 30 Hz and enhancing event continuity.High-resolution rock mechanical parameters are obtained through seismic waveform inversion and regional calibration,enabling the prediction of three-dimensional pore pressure,collapse pressure and fracture pressure.The results are consistent with actual drilling gas shows and core data,confirming the method's accuracy and supporting mud weight planning and wellbore stability efforts.This cost-effective and technically robust approach proves highly reliable in complex environments with significant heterogeneity and anisotropy,assisting drilling decisions and risk management in eastern Sichuan and similar challenging geological settings.展开更多
Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With ...Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.展开更多
Traditional deep learning methods pursue complex and single network architectures without considering the petrophysical relationship between different elastic parameters.The mathematical and statistical significance o...Traditional deep learning methods pursue complex and single network architectures without considering the petrophysical relationship between different elastic parameters.The mathematical and statistical significance of the inversion results may lead to model overfitting,especially when there are a limited number of well logs in a working area.Multitask learning provides an eff ective approach to addressing this issue.Simultaneously,learning multiple related tasks can improve a model’s generalization ability to a certain extent,thereby enhancing the performance of related tasks with an equal amount of labeled data.In this study,we propose an end-to-end multitask deep learning model that integrates a fully convolutional network and bidirectional gated recurrent unit for intelligent prestack inversion of“seismic data to elastic parameters.”The use of a Bayesian homoscedastic uncertainty-based loss function enables adaptive learning of the weight coeffi cients for diff erent elastic parameter inversion tasks,thereby reducing uncertainty during the inversion process.The proposed method combines the local feature perception of convolutional neural networks with the long-term memory of bidirectional gated recurrent networks.It maintains the rock physics constraint relationships among diff erent elastic parameters during the inversion process,demonstrating a high level of prediction accuracy.Numerical simulations and processing results of real seismic data validate the eff ectiveness and practicality of the proposed method.展开更多
The East China Sea Shelf Basin,especially the Xihu depression in its northeastern region,has long been regarded as an important target area for oil and gas exploration in China.Since the development of the late Cretac...The East China Sea Shelf Basin,especially the Xihu depression in its northeastern region,has long been regarded as an important target area for oil and gas exploration in China.Since the development of the late Cretaceous,this region has experienced complex and multistage tectonic movements,such as extensional faulting and compressional inversion,forming its current unique geological structure pattern.As one of the largest Mesozoic–Cenozoic sedimentary basins offshore China,the East China Sea Shelf Basin not only contains abundant oil and gas resources but also occupies a key strategic position.In addition,it is gradually becoming an important base and strategic core area for China's oil and gas resource development.Although remarkable progress has been achieved in oil and gas exploration,seismic exploration in the Xihu depression still faces many challenges.Especially in deep target layers,weak seismic reflection energy,low signal-to-noise ratio,and poor wave group continuity seriously affect the efficiency and accuracy of oil and gas exploration.In addition,given the considerable influence of folds and faults in the East China Sea Xihu Basin,transverse anisotropy is widespread,which causes difficulty for conventional imaging technologies based on isotropic assumptions to achieve accurate imaging.Therefore,to address these challenges and meet the need for accurate imaging of complex structures in the Xihu depression of the East China Sea Basin,it is essential to advance research on anisotropic imaging technologies.This study responds to that need by integrating the reverse time migration method under a tilted transversely isotropic(TTI)medium model and applying it to the imaging of the Xihu depression.The imaging profiles based on the TTI medium can substantially improve the imaging accuracy and signal-to-noise ratio,effectively improve the imaging quality of the fault systems and mid-deep strata in the area,and provide new technical support and progress momentum for oil and gas exploration in the Xihu depression of the East China Sea.展开更多
The green energy transition relies heavily on critical metals,such as rare earth elements(REEs).However,their reserves are primarily focused in a few countries,such as China,which accounts for approximately 70%of glob...The green energy transition relies heavily on critical metals,such as rare earth elements(REEs).However,their reserves are primarily focused in a few countries,such as China,which accounts for approximately 70%of global production.Hence,several countries are currently looking for alternative resources for REEs.Alternative REE resources in the supply chain include recycling of e-waste,industrial waste like red mud and phosphogypsum,coal ash,mine tailings,ocean floor sediments,and even certain types of sedimentary deposits like phosphorites where REEs are present in lower concentrations but at larger volumes compared to primary ore deposits which are becoming targets by REEs industry.Currently,several studies are going on the development of eco-friendly REEs extraction technologies from phosphorite deposits.Consequently,advanced data analysis tools,such as Machine Learning(ML),are becoming increasingly important in mineral prospectivity and are rapidly gaining traction in the earth sciences.Phosphorite deposits are mainly used to manufacture fertilizers as these rocks are known for their significant phosphorus content.Moreover,these formations are considered a prospective resource of REEs.The different types of phosphorite deposits such as continental,seamount,and ore deposits worldwide reported concentrations of∑REE upto 18,000µg/g.Due to the augmented claim of REEs for various ultra-modern,and green technology applications that are required to switch over to a carbon-neutral environment,these phosphorite deposits have become an important target mostly because of their relatively higher content of REEs especially heavy rare earth elements(HREE).For example,Mississippian phosphorites reported ∑ HREE 7,000µg/g.To have a comprehensive understanding of the REEs potential of these phosphorite deposits which also include several Chinese phosphorite deposits,this study is undertaken to review the phosphorite deposits in the world and their REEs potential,in addition to some of the associated aspects such as applications and formation mechanisms for different types of phosphorite deposits such as igneous phosphate deposits,sedimentary phosphorite deposits,marine phosphorite deposits,cave phosphate deposits,and insular guano deposits.Other important aspects include their occurrences,types,geochemical characteristics,the REEs enrichment mechanisms,and various recovery methods adopted to recover REEs from different phosphorite deposits.The present review paper concludes that the recent studies highlight the global potential of phosphorite deposits to satisfy the increasing demand for REEs.Extracting REEs from phosphorite presents no significant technological or environmental difficulties,as long as radioactive elements are eliminated.In India,more comprehensive geological surveys,along with the advancement of new methods and evaluations,are required to locate phosphorite deposits with high concentrations of REEs.展开更多
Riedel shear system,which consists of some different oriented faults and derivative structures,is an important pattern of tectonic activity and stress regulation,which has been widely applied to the interpretation of ...Riedel shear system,which consists of some different oriented faults and derivative structures,is an important pattern of tectonic activity and stress regulation,which has been widely applied to the interpretation of intracontinental deformation.The Laolongwan Basin,located in the western Haiyuan fault zone at the northeastern Tibetan Plateau,is a key area to study the Cenozoic intracontinental deformation in the northeastern plateau,which formed a complex active fault system during the Cenozoic.However,the activity of these faults and their kinematic mechanism remain unclear.In this contribution,based on detailed structural interpretation of remote sensing image,field observations and OSL dating analysis,we propose a Riedel Shear model of active fault system in the Laolongwan Basin.Our observations show that this active fault system consist of four major faults,including the left strike-slip Hasi Shan fault and Zihong Shan fault with thrusting characteristics,the Southern Zihong Shan thrust fault and the Mijia Shan normal fault.The fault offset and OSL dating analyses suggest that the left-lateral slip rate of the Hasi Shan fault is~2.60-3.01 mm/a since ca.15 ka,whereas the Zihong Shan fault is~1.10-1.13 mm/a since ca.14 ka.Faultslip vectors analyses indicate that the active fault system related to the Riedel Shear in the Laolongwan Basin was controlled by the regional ENE-WSW compressive stress.This compression also caused the significant left-lateral strike-slip movement along the Haiyuan fault zone at the same time,which might result from the northeastward continuous expanding of the Tibetan Plateau during the Late Cenozoic.展开更多
The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake....The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.展开更多
基金support to bring out this publication(NGRI/Lib/2023/Pub-104)the Department of Science and Technology(DST),Government of India,for the INSPIRE fellowship(IF220569)+1 种基金carried out as a part of the project[GAP-861-28(TA)]supported by the Ministry of Earth Sciences(MoES),India,tenable at CSIR-NGRI,Hyderabad.
文摘In the urban environment,subsurface contamination is caused by municipal solid waste(MSW)and industrial and agricultural discharges.About 2.01 billion tons of MSW is generated globally each year,most of which is disposed of in landfills.Countries in Asia and Pacific regions account for 43%of global waste generation,while India and China account for 27.45%of global waste generation.Most of the landfills operated in South-Asian countries are non-sanitary,leading to the percolation of leachate in the subsurface.Conventional hydrogeological and geochemical methods are primary indicators and detect high levels of critical parameters near landfills,indicating subsurface contamination from leachate.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106800]an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number 311024001]+3 种基金a project supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)[grant number SML2023SP209]a Research Council of Norway funded project(MAPARC)[grant number 328943]a Nansen Center´s basic institutional funding[grant number 342624]the high-performance computing support from the School of Atmospheric Science at Sun Yat-sen University。
文摘Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC.
文摘The Central India Tectonic Zone (CITZ) marks the trace of a major suture zone along which the south Indian and the north Indian continental blocks were assembled through subduction-accretion- collision tectonics in the Mesoproterozoic. The CITZ also witnessed the major, plume-related, late Cretaceous Deccan volcanic activity, covering substantial parts of the region with continental flood basalts and associated magmatic provinces. A number of major fault zones dissect the region, some of which are seismically active. Here we present results from gravity modeling along five regional profiles in the CITZ, and combine these results with magnetotelluric (MT) modeling results to explain the crustal architecture. The models show a resistive (more than 2000 Ω. m) and a normal density (2.70 g/cm3) upper crust suggesting dominant tonalite-trondhjemite-granodiorite (TTG) composition. There is a marked correlation between both high-density (2.95 g/cm3) and low-density (2.65 g/cm3) regions with high conductive zones (〈80 Ω. m) in the deep crust. We infer the presence of an interconnected grain boundary network of fluids or fluid-hosted structures, where the conductors are associated with gravity lows. Based on the conductive nature, we propose that the lower crustal rocks are fluid reservoirs, where the fluids occur as trapped phase within minerals, fluid-filled porosity, or as fluid-rich structural conduits. We envisage that substantial volume of fluids were transferred from mantle into the lower crust through the younger plume-related Deccan volcanism, as well as the reactivation, fracturing and expulsion of fluids transported to depth during the Mesoproterozoic subduction tectonics. Migration of the fluids into brittle fault zones such as the Narmada North Fault and the Narmada South Fault resulted in generating high pore pressures and weakening of the faults, as reflected in the seismicity. This inference is also supported by the presence of broad gravity lows near these faults, as well as the low velocity in the lower crust beneath regions of recent major earthquakes within the CITZ.
基金CSIR for Emeritus Scientist Scheme and to the Ministry of Earth Sciences for the project, MoES/PO(Seismo)/23(646)/2007
文摘The Aravalli-Delhi and Satpura Mobile Belts (ADMB and SMB) and the Eastern Ghat Mobile Belt (EGMB) in India form major Proterozoic mobile belts with adjoining cratons and contemporary basins. The most convincing features of the ADMB and the SMB have been the crustal layers dipping from both sides in opposite directions, crustal thickening ( -45 km) and high density and high conductivity rocks in upper/ lower crust associated with faults/thrusts. These observations indicate convergence while domal type re- flectors in the lower crust suggest an extensional rifting phase. In case of the SMB, even the remnant of the subducting slab characterized by high conductive and low density slab in lithospheric mantle up to - 120 km across the Purna-Godavari river faults has been traced which may be caused by fluids due to metamorphism. Subduction related intrusives of the SMB south of it and the ADMB west of it suggest N-S and E-W directed convergence and subduction during Meso-Neoproterozoic convergence. The simultaneous E-W conver- gence between the Bundelkhand craton and Marwar craton (Western Rajasthan) across the ADMB and the N-S convergence between the Bundelkhand craton and the Bhaodara and Dharwar cratons across the SMB suggest that the forces of convergence might have been in a NE SW direction with E-W and N-S compo- nents in the two cases, respectively. This explains the arcuate shaped collision zone of the ADMB and the SMB which are connected in their western part. The Eastern Ghat Mobile Belt (EGMB) also shows signatures orE -W directed Meso Neoproterozoic convergence with East Antarctica similar to ADMB in north India. Foreland basins such as Vindhyan (ADMB-SMB), and Kurnool (EGMB) Supergroups of rocks were formed during this convergence. Older rocks such as Aravalli (ADMB), Mahakoshal-Bijawar (SMB), and Cuddapah (EGMB) Supergroups of rocks with several basic/ultrabasic intrusives along these mobile belts, plausibly formed during an earlier episode of rifting during Paleo-Mesoproterozoic period. They are highly disturbed and deformed due to subsequent Meso-Neoproterozoic convergence. As these Paleoproterozoic basins are characterized by large scale basic/ultrabasic intrusives that are considerably wide spread, it is suggested that a plume/superplume might have existed under the Indian cratons at that time which was responsible for the breakup of these cratons. Further, the presence of older intrusives in these mobile belts suggests that there might have been some form of convergence also during Paleoproterozoic period.
文摘The Precambrian shields and associated suture zones of the globe preserve important records of continental growth and destruction, the formation and closure of ocean basins, and the early evolution of the Earth in terms of tectonics, resources, and environment. They also offer critical clues on the nature and style of plate tectonics, mantle dynamics and crust-mantle interaction. In this thematic section of Geoscience Frontiers, a set of four contri- butions are assembled that provide a window to the mechanisms and processes in Precambrian shields and associated suture zones from a geological and geophysical perspective.
文摘Direct current resistivity and ground penetrating radar surveys were employed to obtain the value of the resistivity and dielectric constant in the brine near the Barrow, Alaska. The geophysical surveys were undertaken together with the permafrost drilling program for the measuring of the ground temperature regime and for the core sampling. The sampled cores were measured for their physical and chemical properties in the laboratory under different temperature conditions ((-60) to (20) ℃). Laboratory results support field observations and led to the development of a technique for distinguishing freshwater taliks and brine layers in permafrost. These methods were also employed in freshwater taliks near Council, Alaska. The electrical resistivity is a powerful and sensitive parameter for brine detection. However, the resistivity is a less sensitive indicator of the soil type or water content under highly saline conditions. High frequency dielectric constant is an ideal second parameter for the indication of the soil type, liquid water content and other physical properties. The imaginary part of the dielectric constant and resistivity have a significant dependence upon salinity, i.e. upon freezing temperature. The ground temperature regime and the freezing point of the brine layer are important parameters for studying the electric properties of permafrost terrain.
文摘Although the SSA (singular spectral analysis) is a potential tool for analysing time series of different physical processes, the processing of large geophysical data set requires more time and is found to be computationally expansive. In particular for the SVD (singular value decomposition) of large trajectory matrix, the processing units require huge memory and high performance computing system. In the present work, we propose an alternative scheme based on WSSA (windowed singular spectral analysis), which is robust for analysing long data sets without losing any valuable low-frequency information contained in the data. The underlying scheme reduces the floating point operations in SVD computations as the size of the trajectory matrix is small in windowed processing. In order to test the efficiency, the authors applied the proposed method on two geophysical data sets i.e., the climatic record with 30,000 data points and seismic reflection trace with 8,000 data points. The authors have shown that without distorting any physical information, the low-frequency contents of the data are well preserved after the windowed processing in both the cases.
文摘The Deccan Syneclise is considered to have significant hydrocarbon potential. However, significant hydrocarbon discoveries, particularly for Mesozoic sequences, have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks. In this study, near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area. Soil samples were collected from favorable areas identified by integrated geophysical studies. The compositional and isotopic signatures of adsorbed gaseous hydrocarbons (methane through butane) were used as surface indicators of pe- troleum micro-seepages. An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons (C_1-C_4) and their carbon isotopes from the western part of Tapti graben, Deccan Syneclise, India. The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases. High concentrations of adsorbed thermogenic methane (C1 518 ppb) and ethane plus higher hydrocarbons (∑C2+ = 977 ppb) were observed. Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents. This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks, beneath Deccan Traps. The carbon isotopic composition of methane, ethane and propane ranges are from 22.5‰to -30.2‰ PDB, -18.0‰ to 27.1‰,, PDB and 16.9‰-32.1‰ PDB respectively, which are in thermogenic source. Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks. Prominent hydrocarbon concentra- tions were associated with dykes, lineaments and presented on thinner basaltic cover in the study area, which probably acts as channel for the micro-seepage of hydrocarbons.
文摘The textural and mineralogical characteristics of subsurface sediments along with Ground Penetrating Radar (GPR) data collected along the Western margin of India were used to understand the depositional environments and the provenance of sediments. Textural attributes such as mean, standard deviation, skewness and Kurtosis show fluctuations due to fluvio-marine interaction and it is well understood that the bottom sediments are enriched with muddy sand, which may be deposited by mean of tidal invasion. The abundance of very coarse silt to very fine sand indicates the prevalence of low energy environment. The Linear Discriminate Function analysis indicates the fluvio marine deposition of sediments under low energy condition. GPR data upto a depth of 5 m shows the stratigraphic sequences of very fine sands and coarse silt. Optically Stimulated Luminescence (OSL) dating of sediments implies that the tidal sediments had deposited between ~30 ± 1 and ~90 ± 4 years before Present. XRD studies results the dominance of K-feldspar and deficiency of clay minerals, indicating that most of the sediments are derived from hinterland. Studies indicate that the Provenance of sediments in the Mandvi area is not related to Indus delta even though a considerable part of Gulf sediments are deposited by the Indus River.
基金Supported in part by the National Natural Science Foundation of China under Grant 61903353in part by the SINOPEC Programmes for Science and Technology Development under Grant PE19008-8.
文摘Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue,so the trained model cannot well generalize to the unseen data without calibrating the logs.In this paper,we formulated the geophysical logs calibration problem and give its statistical explanation,and then exhibited an interpretable machine learning method,i.e.,Unilateral Alignment,which could align the logs from one well to another without losing the physical meanings.The involved UA method is an unsupervised feature domain adaptation method,so it does not rely on any labels from cores.The experiments in 3 wells and 6 tasks showed the effectiveness and interpretability from multiple views.
基金Supported by the Sichuan Natural Resources Investment Group Technology Innovation Project"Application Research of Wide Area Electromagnetic Method in Shale Gas Electrical Detection in Southern Sichuan"。
文摘The drilling gas production situation indicates a certain correlation between the shale gas reservoir in the Sichuan Basin and the high and low changes in formation resistivity.These variations are observed in the first member of the Longmaxi Formation to the Wufeng Formation at the bottom of the Longmaxi Formation.Given this correlation and based on the logging electrical data,this study employs the wide-field electromagnetic method(WFEM)to experimentally detect the electrical characteristics of the deep shale gas target layer in the Yibin area of southern Sichuan.The study also tests the regularity and effectiveness of the electrical parameters for evaluating favorable areas of shale gas reservoirs.In terms of specific operation,the structural pattern of the study area is implemented based on the wide-field electromagnetic results and geological data for comprehensive analysis,which identifies the main hidden faults and their influence range on low resistance.The detailed spatial distribution of the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the target layer with a buried depth of 2000-5000m is described.This layer exhibits the characteristics of a continuous and stable distribution of organic shale.After verifying the subsequent electrical logging data,the electrical logging curve is found to be essentially consistent with the shape and trend of the wide-field resistivity curve.This consistency demonstrates the effectiveness of WFEM in detecting shale gas layers.
基金supported by the National Key Program for Developing Basic Science(Nos.2022YFE0106600 and 2022YFF0801702)the National Natural Science Foundation of China(No.42175060)+1 种基金the Jiangsu Province Science Foundation(No.BK20201259)the support of the Jiangsu Provincial Innovation Center for Climate Change.
文摘East Asia is a region characterized by a typical monsoon climate,which is accompanied by strong precipitation with complex spatiotemporal variability during summer.Previous works have emphasized the impact of tropical signals on extreme summer precipitation over East Asia,but the roles of the mid-high latitude cyclones are still unclear.Using a reanalysis dataset,this study discloses the synergistic influences of anomalous signals from different latitudes on the extreme precipitation event in the Beijing-Tianjin-Hebei(BTH)region during the summer of 2023.The main conclusions are obtained as follows:the decreased sea ice density caused more Arctic cyclones to generate at positions further west in the Barents Sea and the west of the Kara Sea and then move southeast to East Asia in 2023.Furthermore,the synergistic influences of the outward Arctic cyclones and anomalous signals from middle and low latitudes are discussed.First,the significant northward jump of the Western Pacific Subtropical High(WPSH)provid-ed the favorable condition of large-scale background circulation for summer precipitation in the BTH region in 2023.In addition,the southward intrusion of the Arctic cyclones and the mid-latitude zonal wave trains transported massive cold air to the BTH region.Subsequently,the cold air masses met with the warm moist air carried by the landfall typhoon‘Doksuri’,which generated strong fronts and triggered the extreme precipitation on July 29.However,another severe typhoon,‘Kanu’,generated and moved northward from the tropical Pacific,which caused the further northward shift of the WPSH and the termination of this persistent extreme precipitation on August 1.
基金the National Key Research and Development Program of China[grant number 2022YFF0801704].
文摘The discrepancy in the trends of the global zonal mean(GZM)intensity of the Hadley circulation(HCI)between reanalysis data and model simulations has been a problem for understanding the changes in HCI and the influence of external forcings.To understand the reason for this discrepancy,this study investigates the trends of intensity of regional HCI of the Northern Hemisphere over the eastern Pacific(EPA),western Pacific(WPA),Atlantic(ATL),Africa(AFR),the Indian Ocean(IDO),and residual area(RA),based on six reanalysis datasets and 13 CMIP6 models.In reanalysis data,the trends in regional HCI over EPA and ATL(WPA and AFR)contribute to(partially offset)the increasing trend in GZM HCI,while the trends in regional HCI over IDO are different in different reanalysis data.The CMIP6 models skillfully reproduce the trends in regional HCI over EPA,ATL,WPA,and AFR,but simulate notable decreasing trends in regional HCI over IDO,which is a key reason for the opposite trends in GZM HCI between reanalysis data and models.The discrepancy in IDO can be attributed to differences in the simulation of diabatic heating and zonal friction between reanalysis data and models.Optimal fingerprint analysis indicates that anthropogenic(ANT)and non-greenhouse gas(NOGHG)forcings are the dominant drivers of the HCI trends in the EPA and ATL regions.In the WPA(AFR)region,NOGHG(ANT)forcing serves as the primary driver.The findings contribute to improving the representation of regional HCI trends in models and improving the attribution of external forcings.
基金supported by Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX010202).
文摘The Jurassic Lianggaoshan Formation in eastern Sichuan Basin is a key target for shale oil exploration.It faces challenges in three-pressure prediction due to complex structural and sedimentary interactions,as well as strong reservoir anisotropy.These issues often lead to wellbore instability and gas logging anomalies during drilling.This study presents an integrated workflow that combines residual moveout correction using correlation-based dynamic time warping(CDTW),high-resolution seismic waveform indication inversion,and three-pressure prediction of jointing well-seismic data.Applied to the LT1 well block,the workflow effectively corrects anisotropic residual moveout in image gathers,leading to a signal strength increase of over 10%in frequency bands above 30 Hz and enhancing event continuity.High-resolution rock mechanical parameters are obtained through seismic waveform inversion and regional calibration,enabling the prediction of three-dimensional pore pressure,collapse pressure and fracture pressure.The results are consistent with actual drilling gas shows and core data,confirming the method's accuracy and supporting mud weight planning and wellbore stability efforts.This cost-effective and technically robust approach proves highly reliable in complex environments with significant heterogeneity and anisotropy,assisting drilling decisions and risk management in eastern Sichuan and similar challenging geological settings.
文摘Internal multiples are commonly present in seismic data due to variations in velocity or density of subsurface media.They can reduce the signal-to-noise ratio of seismic data and degrade the quality of the image.With the development of seismic exploration into deep and ultradeep events,especially those from complex targets in the western region of China,the internal multiple eliminations become increasingly challenging.Currently,three-dimensional(3D)seismic data are primarily used for oil and gas target recognition and drilling.Effectively eliminating internal multiples in 3D seismic data of complex structures and mitigating their adverse effects is crucial for enhancing the success rate of drilling.In this study,we propose an internal multiple prediction algorithm for 3D seismic data in complex structures using the Marchenko autofocusing theory.This method can predict the accurate internal multiples of time difference without an accurate velocity model and the implementation process mainly consists of several steps.Firstly,simulating direct waves with a 3D macroscopic velocity model.Secondly,using direct waves and 3D full seismic acquisition records to obtain the upgoing and down-going Green's functions between the virtual source point and surface.Thirdly,constructing internal multiples of the relevant layers by upgoing and downgoing Green's functions.Finally,utilizing the adaptive matching subtraction method to remove predicted internal multiples from the original data to obtain seismic records without multiples.Compared with the two-dimensional(2D)Marchenko algo-rithm,the performance of the 3D Marchenko algorithm for internal multiple prediction has been significantly enhanced,resulting in higher computational accuracy.Numerical simulation test results indicate that our proposed method can effectively eliminate internal multiples in 3D seismic data,thereby exhibiting important theoretical and industrial application value.
基金supported by National Key R&D Program of China(2018YFA0702501)National Natural Science Foundation of China (41974140)+1 种基金Science and Technology Management Department,China National Petroleum Corporation(2022DQ0604-01)China National Petroleum Corporation-China University of Petroleum (Beijing) Strategy。
文摘Traditional deep learning methods pursue complex and single network architectures without considering the petrophysical relationship between different elastic parameters.The mathematical and statistical significance of the inversion results may lead to model overfitting,especially when there are a limited number of well logs in a working area.Multitask learning provides an eff ective approach to addressing this issue.Simultaneously,learning multiple related tasks can improve a model’s generalization ability to a certain extent,thereby enhancing the performance of related tasks with an equal amount of labeled data.In this study,we propose an end-to-end multitask deep learning model that integrates a fully convolutional network and bidirectional gated recurrent unit for intelligent prestack inversion of“seismic data to elastic parameters.”The use of a Bayesian homoscedastic uncertainty-based loss function enables adaptive learning of the weight coeffi cients for diff erent elastic parameter inversion tasks,thereby reducing uncertainty during the inversion process.The proposed method combines the local feature perception of convolutional neural networks with the long-term memory of bidirectional gated recurrent networks.It maintains the rock physics constraint relationships among diff erent elastic parameters during the inversion process,demonstrating a high level of prediction accuracy.Numerical simulations and processing results of real seismic data validate the eff ectiveness and practicality of the proposed method.
基金the Major Science and Technology Project of CNOOC Limited Project‘Exploration Direction and Key Technology Study of Large and Medium-Sized Gas Fields in Haixi Sag,East China Sea’(No.KJZX-2023-0101)the China National Offshore Oil Corporation(CNOOC)during the‘14th Five-Year Plan’(No.KJGG2022-0104)+1 种基金the National Natural Science Foundation of China(Nos.42074138,42206195)the Science and Technology Innovation Project of the LaoShan Laboratory(No.2021WHZZB0703)。
文摘The East China Sea Shelf Basin,especially the Xihu depression in its northeastern region,has long been regarded as an important target area for oil and gas exploration in China.Since the development of the late Cretaceous,this region has experienced complex and multistage tectonic movements,such as extensional faulting and compressional inversion,forming its current unique geological structure pattern.As one of the largest Mesozoic–Cenozoic sedimentary basins offshore China,the East China Sea Shelf Basin not only contains abundant oil and gas resources but also occupies a key strategic position.In addition,it is gradually becoming an important base and strategic core area for China's oil and gas resource development.Although remarkable progress has been achieved in oil and gas exploration,seismic exploration in the Xihu depression still faces many challenges.Especially in deep target layers,weak seismic reflection energy,low signal-to-noise ratio,and poor wave group continuity seriously affect the efficiency and accuracy of oil and gas exploration.In addition,given the considerable influence of folds and faults in the East China Sea Xihu Basin,transverse anisotropy is widespread,which causes difficulty for conventional imaging technologies based on isotropic assumptions to achieve accurate imaging.Therefore,to address these challenges and meet the need for accurate imaging of complex structures in the Xihu depression of the East China Sea Basin,it is essential to advance research on anisotropic imaging technologies.This study responds to that need by integrating the reverse time migration method under a tilted transversely isotropic(TTI)medium model and applying it to the imaging of the Xihu depression.The imaging profiles based on the TTI medium can substantially improve the imaging accuracy and signal-to-noise ratio,effectively improve the imaging quality of the fault systems and mid-deep strata in the area,and provide new technical support and progress momentum for oil and gas exploration in the Xihu depression of the East China Sea.
基金the Anusandhan National Research Foundation(ANRF),Science and Engineering Research Board(SERB),Department of Science&Technology,Government of India for a start-up research grant(M-14/0599,Sanction order no.SRG/2022/001478)Seed Grant under Institutions of Eminence(IoE),Banaras Hindu University(BHU)(Dev.Scheme No.6031)for financial assistance.
文摘The green energy transition relies heavily on critical metals,such as rare earth elements(REEs).However,their reserves are primarily focused in a few countries,such as China,which accounts for approximately 70%of global production.Hence,several countries are currently looking for alternative resources for REEs.Alternative REE resources in the supply chain include recycling of e-waste,industrial waste like red mud and phosphogypsum,coal ash,mine tailings,ocean floor sediments,and even certain types of sedimentary deposits like phosphorites where REEs are present in lower concentrations but at larger volumes compared to primary ore deposits which are becoming targets by REEs industry.Currently,several studies are going on the development of eco-friendly REEs extraction technologies from phosphorite deposits.Consequently,advanced data analysis tools,such as Machine Learning(ML),are becoming increasingly important in mineral prospectivity and are rapidly gaining traction in the earth sciences.Phosphorite deposits are mainly used to manufacture fertilizers as these rocks are known for their significant phosphorus content.Moreover,these formations are considered a prospective resource of REEs.The different types of phosphorite deposits such as continental,seamount,and ore deposits worldwide reported concentrations of∑REE upto 18,000µg/g.Due to the augmented claim of REEs for various ultra-modern,and green technology applications that are required to switch over to a carbon-neutral environment,these phosphorite deposits have become an important target mostly because of their relatively higher content of REEs especially heavy rare earth elements(HREE).For example,Mississippian phosphorites reported ∑ HREE 7,000µg/g.To have a comprehensive understanding of the REEs potential of these phosphorite deposits which also include several Chinese phosphorite deposits,this study is undertaken to review the phosphorite deposits in the world and their REEs potential,in addition to some of the associated aspects such as applications and formation mechanisms for different types of phosphorite deposits such as igneous phosphate deposits,sedimentary phosphorite deposits,marine phosphorite deposits,cave phosphate deposits,and insular guano deposits.Other important aspects include their occurrences,types,geochemical characteristics,the REEs enrichment mechanisms,and various recovery methods adopted to recover REEs from different phosphorite deposits.The present review paper concludes that the recent studies highlight the global potential of phosphorite deposits to satisfy the increasing demand for REEs.Extracting REEs from phosphorite presents no significant technological or environmental difficulties,as long as radioactive elements are eliminated.In India,more comprehensive geological surveys,along with the advancement of new methods and evaluations,are required to locate phosphorite deposits with high concentrations of REEs.
基金financially supported by the Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-msxm X0487)the Open Fund of Key Laboratory of Sedimentary Basins and Oil and Gas Resources,the Ministry of Natural Resources(No.cdcgs2022006)+2 种基金the National Natural Science Foundation of China(No.42072001)the China Geological Survey(No.DD20190018)the Science and Technology Innovation Fund for Postgraduates of Chongqing University of Science and Technology(No.YKJCX2220101)。
文摘Riedel shear system,which consists of some different oriented faults and derivative structures,is an important pattern of tectonic activity and stress regulation,which has been widely applied to the interpretation of intracontinental deformation.The Laolongwan Basin,located in the western Haiyuan fault zone at the northeastern Tibetan Plateau,is a key area to study the Cenozoic intracontinental deformation in the northeastern plateau,which formed a complex active fault system during the Cenozoic.However,the activity of these faults and their kinematic mechanism remain unclear.In this contribution,based on detailed structural interpretation of remote sensing image,field observations and OSL dating analysis,we propose a Riedel Shear model of active fault system in the Laolongwan Basin.Our observations show that this active fault system consist of four major faults,including the left strike-slip Hasi Shan fault and Zihong Shan fault with thrusting characteristics,the Southern Zihong Shan thrust fault and the Mijia Shan normal fault.The fault offset and OSL dating analyses suggest that the left-lateral slip rate of the Hasi Shan fault is~2.60-3.01 mm/a since ca.15 ka,whereas the Zihong Shan fault is~1.10-1.13 mm/a since ca.14 ka.Faultslip vectors analyses indicate that the active fault system related to the Riedel Shear in the Laolongwan Basin was controlled by the regional ENE-WSW compressive stress.This compression also caused the significant left-lateral strike-slip movement along the Haiyuan fault zone at the same time,which might result from the northeastward continuous expanding of the Tibetan Plateau during the Late Cenozoic.
基金supported by the National Natural Science Foundation of China(Grant No.42474227,42241106,42388101)financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space(DLR)under contract 50 OC 0302
文摘The solar wind's interaction with the Moon has traditionally been understood through the Moon's absorption of solar wind particles and the formation of a plasma cavity on its nightside,known as the lunar wake.This study reveals unexpected,large-scale perturbations in the solar wind upstream of the Moon,using 11 years of data from the OMNI and ARTEMIS(Acceleration,Reconnection,Turbulence and Electrodynamics of Moon's Interaction with the Sun)missions(2012-2023).We find systematic moonward deviations of~tens of km/s in a direction perpendicular to the solar wind(moonward),at altitudes of up to 1000 km,particularly when the interplanetary magnetic field(IMF)lines are oblique to the solar wind(30°<θ<60°)and connected to the lunar dayside.The longer the duration of the interaction,the greater the moonward deviation.These perturbations can be explained by neither solar wind pickup of the reflected ions,nor lunar wake dynamics.Instead,they appear to correlate with magnetic connectivity between the ARTEMIS probes and the lunar surface,suggesting a more complex solar wind interaction than previously thought.