Migration is a complex demographic phenomenon.Its dynamics can be explained by several factors whose spatial and temporal evolution is not easy to control.That is why this article aims to understand the factors of mig...Migration is a complex demographic phenomenon.Its dynamics can be explained by several factors whose spatial and temporal evolution is not easy to control.That is why this article aims to understand the factors of migration from a spatiotemporal perspective to fill the gaps in the literature.The aim of this article is to analyse the spatiotemporal dynamics of internal migration factors to deduce the zones of origin and destination in Burkina Faso.To do this,several types of data were used.These included secondary,spatial,statistical and survey data.The results of this study show that the influence of internal migration factors is uneven.The spatial distribution of internal migration factors follows a north-south gradient,with favourable conditions in the south.In fact,the northern part is characterised by a large population exodus,with around 42.6%of outgoing internal migrants,and the southern part by a large population influx.This southern part of the country receives around 34.6%of internal migrants.The areas from which migrants depart have unfavourable climatic,environmental,or socio-economic conditions,whereas the areas to which migrants migrate are characterised by favourable conditions for these factors.展开更多
Water scarcity in Khuzestan Province,Iran,has attracted growing concerns despite the region's abundant water resources.The province predominantly relies on surface water,prompting an assessment of groundwater'...Water scarcity in Khuzestan Province,Iran,has attracted growing concerns despite the region's abundant water resources.The province predominantly relies on surface water,prompting an assessment of groundwater's potential to supplement water supplies during surface water shortages.This study assesses the province's groundwater availability and quality under increased exploitation conditions.Between 2008 and 2018,data on groundwater quantity and quality were collected from 204 exploration wells and 70 piezometric wells across 19 aquifers.The analysis revealed that 53%of aquifers in the eastern and northeastern regions experienced declining groundwater levels.Hydrochemical assessments indicated low concentrations of major ions in the northeastern,while high levels were observed from the central region towards the southeast.These variations were attributed to agricultural and industrial activities,seawater intrusion,and the influences of evaporation and geological factors.The dominant hydrochemical facies identified were of the Ca-Cl type.Water quality classification showed that 48%of groundwater samples fell within the C4S4-C4S1 category,primarily in the western,central,and southern regions,while 27%were classified as C3S2,C3S1,and 25%as C2S1,mainly in the northern and eastern regions.The Irrigation WWater Quality(IWQ)index indicated that many samples were suitable for irrigation.Additionally,the analysis potable groundwater was primarily found in the northern,northeastern,and eastern aquifers,with quality declining toward the south.The study highlights that certain aquifers in the northern and eastern regions offer greater potential for sustainable groundwater exploitation during water shortages.These findings provide valuable insights for on how to implement effective land and water management strategies to mitigate future water crises.展开更多
The simultaneous increase in development in Pesawaran Regency is closely correlated with the intense competi-tion for land use.However,low policy implementation effectiveness has led to construction beyond designated ...The simultaneous increase in development in Pesawaran Regency is closely correlated with the intense competi-tion for land use.However,low policy implementation effectiveness has led to construction beyond designated spatial plan.The study used a quantitative survey using Landsat images in 2016,2019,and 2022.The data analysis techniques used geographic information systems integrated with Artificial Neural Network(ANN)and Cellular Automata(CA)models.This study aims to predict land-use change in 2031,evaluate its alignment with spatial planning,and provide guidance for controlling land-use change.The results showed that there has been an increase in land use.In 2019,built-up land reached 7,069.65 Ha.The model shows its ability to predict land simulation and transformation,where it is predicted that built-up land in 2031 will experience an increase of up to 40.10%,so development and change cannot be avoided every year.This study also suggests that decision-makers and local governments should reconsider spatial planning strategies.This study shows that there have been many land use changes from 2016 to 2022.The model shows its ability to predict simulation and land transformation.When using the model,there are many changes in the land use area in 2031.This is due to wet agricultural land turning into built-up land by almost 70%.This study shows that road network influence land-use change.The cellular automata model managed to capture the complexity with simple rules.Predictions for future research should focus on conserving wetlands and primary forests.展开更多
In this article we use the Urban Political Ecology approach to show that by analysing governance networks we can better understand the production of certain socio-environmental transformations that negatively affect s...In this article we use the Urban Political Ecology approach to show that by analysing governance networks we can better understand the production of certain socio-environmental transformations that negatively affect some social groups while benefiting others. Drawing upon two case studies in the UK, the article explores the dialectical relationships between different modes of urban governance on one hand and the socio-environmental transformations fulfilled in each case study on the other hand. The article concludes that although urban regeneration policies are always constrained by the neoliberal established framework of power relations, policy outputs and outcomes could be very different from one place to another, shaping uneven socio-environmental constructions. Finally, we make some recommendations in order to stimulate the production of more sustainable communities in the future.展开更多
Understanding the spatial interaction among residents,cooling service,and heat risk area in complex urban areas is conducive to developing targeted management.However,traditional urban thermal environment assessments ...Understanding the spatial interaction among residents,cooling service,and heat risk area in complex urban areas is conducive to developing targeted management.However,traditional urban thermal environment assessments typically relied on simple linear integration of associated indicators,often neglecting the spatial interaction effect.To explore the spatial interaction among the three elements,this study proposes an accessibility-based urban thermal environment assessment framework.Using Zhengzhou,a rapidly urbanizing city,as an example,remotely sensed images from three periods(2010,2015 and 2020)were applied to extract urban green space(UGS)and hot island area(HIA).An improved two-step floating catchment area(2SFCA)method and bivariate local Moran’s I were employed to explore whether residents’clustering locations are more likely to access cooling service or to be exposed to heat risk.The results demonstrate that the UGS in the city has been expanding,whereas the HIA shrank within the inner city in 2015 and then increased in 2020.Even though the urban thermal environment may have improved in the last decade,the spatial interaction among the residents,cooling service and heat risk area could be exacerbated.Spatial autocorrelation shows an increase in locations that are disadvantageous for resident congregation.Even when sufficient cooling services were provided,residents in these areas could still be exposed to high heat risk.The developed urban thermal environment framework provides a novel insight into the residents’heat risk exposure and cooling service accessibility,and the findings could assist urban planners in targeting the improvement of extra heat exposure risk locations.展开更多
A surging population in Karnataka State,a semi-arid region in India,poses a threat to both food security and livelihood sustainability,necessitating a concentrated effort to bolster agricultural efficiency and achieve...A surging population in Karnataka State,a semi-arid region in India,poses a threat to both food security and livelihood sustainability,necessitating a concentrated effort to bolster agricultural efficiency and achieve United Naton’s Sustainable Development Goal 2(zero hunger).Therefore,in order to address the pressing issue of food scarcity in Karnataka,this study meticulously examined the spatio-temporal variation of agricultural efficiency and irrigation intensity in Karnataka,uncovering its significant dependence of agricultural efficiency on irrigation intensity.Specifically,this study used a one-way analysis of variance(ANOVA)to ascertain significant differences in the means of agricultural efficiency and irrigation intensity during 2004-2005 and 2018-2019.This study showed that the maximum improvement in agricultural efficiency index was recorded in Belgaum(40.24),Gulbarga(24.77),and Yadgir districts(22.92)between 2004-2005 and 2018-2019,which indicated the progressing trend and better scope for agriculture extension.On the contrary,some districts expressed threat(a decline of above 20.00 of agricultural efficiency index)and needed special care for the improvement of agricultural efficiency in four northern districts(Bagalkot,Bidar,Raichur,and Bijapur),three southern districts(Chitradurga,Chikballapur and Hassan),and two southern districts(Koppal and Gadag)in Karnataka.During 2004-2005,irrigation intensity varied from 3.19%to 56.39%,with the lowest irrigation intensity in Kodagu District and the highest irrigation intensity in Shimoga District.During 2018-2019,irrigation intensity changed from 0.77%to 72.77%,with the lowest irrigation intensity in Kodagu District and the highest in Dakshin Kannad District.Moreover,the research scrutinized the complex relationship between agricultural efficiency and irrigation intensity,with the correlation coefficient increased from 0.162 during 2004-2005 to 0.255 during 2018-2019.It implies that in both periods,a low positive correlation existed between these two variables.Over time,several factors(high-yield seeds and chemical fertilizers)other than irrigation intensity gradually became essential for agricultural efficiency.This research offers a wealth of valuable insights for regional planners and policy-makers contending with comparable challenges in various regions of India and other developing countries.展开更多
Earthquake is a disastrous natural hazard that threatens numerous cities worldwide.The interval between the foreshock and the main event can sometimes last several minutes.Meanwhile,crowd emergency evacuation and find...Earthquake is a disastrous natural hazard that threatens numerous cities worldwide.The interval between the foreshock and the main event can sometimes last several minutes.Meanwhile,crowd emergency evacuation and finding shelter are vital for search and rescue managers.At the same time,many unpredicted challenges,such as the sudden increase in travel demand,shifts in public behavior,and the change in the regular transport supply,may arise due to evacuation conditions,which lead to different situations.This paper aims to introduce an approach for quick decision-making and timely evacuation response required by establishing a situation-aware system to minimize these risks and ensure the success of the evacuation plans,to support and predict current and future actions within the dynamic space of the crisis.The main contribution is innovating a Situation-Aware Emergency Evacuation(SAEE)model to enable crisis managers and evacuees to make the right decisions by providing timely and reliable information about the situation.This method is utilized in two situations:designing the emergency evacuation plan and finding the shortest/safest routes to reduce travel time for evacuees.Therefore,a hybrid approach is introduced,which involves a Fuzzy Inference System(FIS)and Deep Long Short-Term Memory(DLSTM)algorithm to identify,infer,and extract the existing situation at different levels(e.g.people,vehicles,and surroundings)after a foreshock using multi-agent-based simulation.The method proposed was simulated in the traffic network of District 6 of Tehran,the capital of Iran.The model results show that the evacuees'spatial knowledge and perception,as well as awareness of the situation of other agents and their surroundings,led to a significant(40%)reduction in the complete evacuation time.This time is considered the most pivotal factor in saving human lives and their arrival in safer areas.The role of situation awareness systems and increasing human cognition and perception can significantly help in this matter.展开更多
Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy sea...Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy season. The study aims to assess recent flood risks in the municipality of Yopougon of the Autonomous District of Abidjan. To achieve this objective, the study analyzed two types of data: daily rainfall from 1971 to 2022 and parameters derived from a Numerical Field and Altitude Model (NFAM). The study examined six rainfall parameters using statistical analysis and combined land use maps obtained from the NFAM of Yopougon. The results indicated that, in 67% of cases, extreme rainfall occurred mainly between week 3 of May and week 1 of July. The peak of extreme rainfall was observed in week 2 of June with 15% of cases. These are critical periods of flood risks in the Autonomous District of Abidjan, especially in Yopougon. In addition, there was variability of rainfall parameters in the Autonomous District of Abidjan. This was characterized by a drop of annual and seasonal rainfall, and an increase of numbers of rainy days. Flood risks in Yopougon are, therefore, due to the regular occurrence of rainy events. Recent floods in Yopougon were caused by normal rains ranging from 55 millimeters (mm) to 153 mm with a return period of less than five years. Abnormal heavy rains of a case study on June 20-21, 2022 in Yopougon were detected by outputs global climate models. Areas of very high risk of flood covered 18% of Yopougon, while 31% were at high risk. Climate information from this study can assist authorities to take in advance adaptation and management measures.展开更多
In this study,the impact of the training sample selection method on the performance of fuzzy-based Possibilistic c-means(PCM)and Noise Clustering(NC)classifiers were examined and mapped the cumin and fennel rabi crop....In this study,the impact of the training sample selection method on the performance of fuzzy-based Possibilistic c-means(PCM)and Noise Clustering(NC)classifiers were examined and mapped the cumin and fennel rabi crop.Two training sample selection approaches that have been investigated in this study are“mean”and“individual sample as mean”.Both training sample techniques were applied to the PCM and NC classifiers to classify the two indices approach.Both approaches have been studied to decrease spectral information in temporal data processing.The Modified Soil Adjusted Vegetation Index 2(MSAVI-2)and Class-Based Sensor Independent Modified Soil Adjusted Vegetation Index-2(CBSI-MSAVI-2)have been considered to minimize soil background effects,enhancing vegetation detection accuracy,particularly in areas with sparse vegetation cover.The MMD(MeanMembership Difference)and RMSE(RootMean Square Error)approaches were used to measure the study’s accuracy.To illustrate that the classifier successfully describes classes,cluster validity(SSE)was also performed,and the variance parameter was computed to handle heterogeneity within cumin and fennel crop fields.For the calculation of RMSE,Sentinel-2 data was used as classified,whereas PlanetScope satellite data was utilized as the reference data set.The best result was obtained using the NC classifier with“individual sample as mean”using CBSI-MSAVI-2 temporal indices.For Fuzziness Factor(m)=1.1,the RMSE,MMD,Variance,and SSE values for the NC classifier using“individual sample as mean”on the CBSI-MSAVI-2 temporal indices for cumin were 0.00098,0.00162,0.02857,and 0.97143,respectively and for fennel were 0.00025,0.00248,0.10420,and 3.54286,respectively.展开更多
In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the pos...In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the positive effects of human activities in the coupled human and natural system(CHANS) by introducing adaptive capacity as an evaluation criterion.A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability:exposure,sensitivity and adaptive capacity.We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China,where drought hazard is the key threat to the CHANS.Specific indices were produced to translate such climate variance and social-economic differences into specific indicators.The results showed that the most exposed regions are the inner land areas,while counties located in the eastern part are potentially the most adaptive ones.Ordos City and Bayannur City are most frequently influenced by multiple climate variances,showing highest sensitivity.Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences.After depiction of the spatial differentiations and analysis of the reasons,climate zones were divided to depict the differences in facing to the drought threats.The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map.Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope.This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management.展开更多
The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleoso...The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.展开更多
Hong Kong is a hyper-dense city with 7x10(6) people living in an area of 1100km(2). One way to improve the livability of compacted and congested cities like Hong Kong is through the provision of urban parks, an aspect...Hong Kong is a hyper-dense city with 7x10(6) people living in an area of 1100km(2). One way to improve the livability of compacted and congested cities like Hong Kong is through the provision of urban parks, an aspect that has largely been under-researched. This study focuses on how users perceive and utilize various facilities in the Kowloon Park. The findings revealed that the Kowloon Park is one of the most preferred parks in Hong Kong for both local residents and tourists. Users were quite satisfied with the park's facilities. Notably, the most important component of an urban park is its greenery. This is followed by water elements, seating places, and facilities for various recreational activities. The improvements users would like to see in urban parks include good design and management, meeting users' needs, overcoming barriers to use, and providing a high quality and varied experience for different groups in the community. The findings of this study provide a good basis to address park management issues from the users' perspective. In particular, parks should provide easy access, encourage optimum usage and enable complimentary improvements to the environment.展开更多
We present geomorphological evidence for multiple glacial fluctuations during the Quaternary in the Taniantaweng Mountain, which is situated at the transition zone of the southeastern Qinghai-Tibet Plateau and the Yun...We present geomorphological evidence for multiple glacial fluctuations during the Quaternary in the Taniantaweng Mountain, which is situated at the transition zone of the southeastern Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. To reconstruct the history of glacial evolution during the Quaternary Glaciation, we present a ~13000 km^2 geomorphologic map(1:440,000) for the Quaternary glaciations, as well as three electron spin resonance(ESR) ages and three optically stimulated luminescence(OSL) ages from the landforms. By integrating these with ages from previous studies, four major glacial advances are identified during marine oxygen isotope stages(MIS) 6, 3, 2 and 1. This glacial chronology is in reasonable agreement with existing glacial chronologies from other parts of the Hengduan Mountains and surrounding mountains. Glaciers had extended to the Yuqu River during the glacial maximum advance(MIS 6), but became successively more restricted from MIS 3 to MIS 1. The glacial distribution show that precipitation brought by the south Asian monsoon might play a primary role in driving glacial advances during the last glacial period in the southeastern Qinghai-Tibet Plateau.展开更多
This paper used five years (2001-2006) time series of MODIS NDVI images with a 1-km spatial resolution to produce a land cover map of Qinghai Province in China. A classification approach for different land cover typ...This paper used five years (2001-2006) time series of MODIS NDVI images with a 1-km spatial resolution to produce a land cover map of Qinghai Province in China. A classification approach for different land cover types with special emphasis on vegetation, especially on sparse vegetation, was developed which synthesized Decision Tree Classification, Supervised Classification and Unsupervised Classification. The spatial distribution and dynamic change of vegetation cover in Qinghai from 2001 to 2006 were analyzed based on the land cover classification map and five grade elevation belts derived from Qinghai DEM. The result shows that vegetation cover in Qinghai in recent five years has been some improved and the area of vegetation was increased from 370,047 km^2 in 2001 to 374,576 km^2 in 2006. Meanwhile, vegetation cover ratio was increased by 0.63%. Vegetation cover ratio in high mountain belt is the largest (67.92%) among the five grade elevation belts in Qinghai Province. The second largest vegetation cover ratio is in middle mountain belt (61.80%). Next, in the order of the decreasing vegetation cover ratio, the remaining grades are extreme high mountain belt (38.98%), low mountain belt (25.55%) and flat region belt (15.46%). The area of middle density grassland in high mountain belt is the biggest (94,003 km^2), and vegetation cover ratio of dense grassland in middle mountain belt is the highest (32.62%), and the increased area of dense grassland in high mountain belt is the greatest (1280 km^2). In recent five years the conversion from sparse grass to middle density grass in high mountain belt has been the largest vegetation cover variation and the converted area is 15931 km^2.展开更多
Ship-based sea ice observation data (concentrations, ice thickness, topography and overlying snow cover) were collected from Middle Weddell Sea to Prydz Bay, Antarctic during the period of 4 to 17 Jan 2003. Antarctic ...Ship-based sea ice observation data (concentrations, ice thickness, topography and overlying snow cover) were collected from Middle Weddell Sea to Prydz Bay, Antarctic during the period of 4 to 17 Jan 2003. Antarctic ice chart of first week of Jan 2003 was derived from National Ice Center (NIC). The compared analysis of sea ice concentrations and thickness distributions were conducted though in situ data and NIC chart. Results from sea ice concentration-analysis indicated the presence of large-scale open water between 2000 and 4100 km along transit route resulted from sea ice drifting. We describe the existence of mostly smooth first-year sea ice in study region ranged between 30 and 120 cm. We also display the derived overlying snow coverage. Our results reveal the strong correspondence between ship-based observations and remotely sensed ice charts whatever in ice concentrations and ice thickness distributions.展开更多
Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the veget...Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFvc) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFvc range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using CLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to bemore reliable than the C factor based on the fractional vegetation cover.展开更多
Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carr...Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.展开更多
The Mushroom Stone Forest, which consists of granite boulders looking like mushrooms with flared sidewalls, is located in eastern Guangdong China, and is a famous scenic spot that draws many tourists each year. The Mu...The Mushroom Stone Forest, which consists of granite boulders looking like mushrooms with flared sidewalls, is located in eastern Guangdong China, and is a famous scenic spot that draws many tourists each year. The Mushroom Stone Forest has been traditionally recognized as a collection of wave erosion landforms and used for the reconstruction of palaeo-sea-level changes along the coastal areas of eastern Guangdong in previous coastal researches. By combining in situ measurements of the aspect,vertical profile and height of boulder sidewalls,palaeo-coastal wave direction estimation, rock density determination, major elemental analysis, and petrographic thin section analysis, this paper presents an alternative origin for the Mushroom Stone Forest.Our results suggest that wave or wind erosion cannot offer a satisfactory explanation for the formation of the Mushroom Stone Forest; The boulders that make up the Mushroom Stone Forest originated from the corestones in the granite weathering crusts of the Little Sangpu Mountain; When the debris of the weathering crust was removed, the corestones are perched on rocky outcrops or half-buried by weathering debris beneath the natural land surface;The flared sidewall (concave vertical profile) of the boulders is a particular form developed in the foot zone of a half-buried boulder through increased chemical weathering beneath the land surface. A recent exposed half-buried boulder found in the study area provides convincing evidence to support this argument. Sea water reached the foot of the Sangpu Mountain during the Holocene transgression, but it merely provided a mechanism to erode the weathering debris from the bottom of the mushroom rocks and enhanced salt weathering that created tafoni on the boulders. These findings demonstrate that the boulders of the Mushroom Stone Forest are not sea stacks and cannot be served as a palaeo-sea-level indicator.展开更多
文摘Migration is a complex demographic phenomenon.Its dynamics can be explained by several factors whose spatial and temporal evolution is not easy to control.That is why this article aims to understand the factors of migration from a spatiotemporal perspective to fill the gaps in the literature.The aim of this article is to analyse the spatiotemporal dynamics of internal migration factors to deduce the zones of origin and destination in Burkina Faso.To do this,several types of data were used.These included secondary,spatial,statistical and survey data.The results of this study show that the influence of internal migration factors is uneven.The spatial distribution of internal migration factors follows a north-south gradient,with favourable conditions in the south.In fact,the northern part is characterised by a large population exodus,with around 42.6%of outgoing internal migrants,and the southern part by a large population influx.This southern part of the country receives around 34.6%of internal migrants.The areas from which migrants depart have unfavourable climatic,environmental,or socio-economic conditions,whereas the areas to which migrants migrate are characterised by favourable conditions for these factors.
文摘Water scarcity in Khuzestan Province,Iran,has attracted growing concerns despite the region's abundant water resources.The province predominantly relies on surface water,prompting an assessment of groundwater's potential to supplement water supplies during surface water shortages.This study assesses the province's groundwater availability and quality under increased exploitation conditions.Between 2008 and 2018,data on groundwater quantity and quality were collected from 204 exploration wells and 70 piezometric wells across 19 aquifers.The analysis revealed that 53%of aquifers in the eastern and northeastern regions experienced declining groundwater levels.Hydrochemical assessments indicated low concentrations of major ions in the northeastern,while high levels were observed from the central region towards the southeast.These variations were attributed to agricultural and industrial activities,seawater intrusion,and the influences of evaporation and geological factors.The dominant hydrochemical facies identified were of the Ca-Cl type.Water quality classification showed that 48%of groundwater samples fell within the C4S4-C4S1 category,primarily in the western,central,and southern regions,while 27%were classified as C3S2,C3S1,and 25%as C2S1,mainly in the northern and eastern regions.The Irrigation WWater Quality(IWQ)index indicated that many samples were suitable for irrigation.Additionally,the analysis potable groundwater was primarily found in the northern,northeastern,and eastern aquifers,with quality declining toward the south.The study highlights that certain aquifers in the northern and eastern regions offer greater potential for sustainable groundwater exploitation during water shortages.These findings provide valuable insights for on how to implement effective land and water management strategies to mitigate future water crises.
基金supported by the Ministry of Education,Culture,Research,and Technology Directorate General of Higher Education,Research,and Technology grant number[2147/UN2621/PN/2022].
文摘The simultaneous increase in development in Pesawaran Regency is closely correlated with the intense competi-tion for land use.However,low policy implementation effectiveness has led to construction beyond designated spatial plan.The study used a quantitative survey using Landsat images in 2016,2019,and 2022.The data analysis techniques used geographic information systems integrated with Artificial Neural Network(ANN)and Cellular Automata(CA)models.This study aims to predict land-use change in 2031,evaluate its alignment with spatial planning,and provide guidance for controlling land-use change.The results showed that there has been an increase in land use.In 2019,built-up land reached 7,069.65 Ha.The model shows its ability to predict land simulation and transformation,where it is predicted that built-up land in 2031 will experience an increase of up to 40.10%,so development and change cannot be avoided every year.This study also suggests that decision-makers and local governments should reconsider spatial planning strategies.This study shows that there have been many land use changes from 2016 to 2022.The model shows its ability to predict simulation and land transformation.When using the model,there are many changes in the land use area in 2031.This is due to wet agricultural land turning into built-up land by almost 70%.This study shows that road network influence land-use change.The cellular automata model managed to capture the complexity with simple rules.Predictions for future research should focus on conserving wetlands and primary forests.
文摘In this article we use the Urban Political Ecology approach to show that by analysing governance networks we can better understand the production of certain socio-environmental transformations that negatively affect some social groups while benefiting others. Drawing upon two case studies in the UK, the article explores the dialectical relationships between different modes of urban governance on one hand and the socio-environmental transformations fulfilled in each case study on the other hand. The article concludes that although urban regeneration policies are always constrained by the neoliberal established framework of power relations, policy outputs and outcomes could be very different from one place to another, shaping uneven socio-environmental constructions. Finally, we make some recommendations in order to stimulate the production of more sustainable communities in the future.
基金funded by the Major Project of the National Social Science Foundation of China(Grant No.19ZDA088)the National Natural Science Foundation of China Projects(Grant No.72204101).
文摘Understanding the spatial interaction among residents,cooling service,and heat risk area in complex urban areas is conducive to developing targeted management.However,traditional urban thermal environment assessments typically relied on simple linear integration of associated indicators,often neglecting the spatial interaction effect.To explore the spatial interaction among the three elements,this study proposes an accessibility-based urban thermal environment assessment framework.Using Zhengzhou,a rapidly urbanizing city,as an example,remotely sensed images from three periods(2010,2015 and 2020)were applied to extract urban green space(UGS)and hot island area(HIA).An improved two-step floating catchment area(2SFCA)method and bivariate local Moran’s I were employed to explore whether residents’clustering locations are more likely to access cooling service or to be exposed to heat risk.The results demonstrate that the UGS in the city has been expanding,whereas the HIA shrank within the inner city in 2015 and then increased in 2020.Even though the urban thermal environment may have improved in the last decade,the spatial interaction among the residents,cooling service and heat risk area could be exacerbated.Spatial autocorrelation shows an increase in locations that are disadvantageous for resident congregation.Even when sufficient cooling services were provided,residents in these areas could still be exposed to high heat risk.The developed urban thermal environment framework provides a novel insight into the residents’heat risk exposure and cooling service accessibility,and the findings could assist urban planners in targeting the improvement of extra heat exposure risk locations.
文摘A surging population in Karnataka State,a semi-arid region in India,poses a threat to both food security and livelihood sustainability,necessitating a concentrated effort to bolster agricultural efficiency and achieve United Naton’s Sustainable Development Goal 2(zero hunger).Therefore,in order to address the pressing issue of food scarcity in Karnataka,this study meticulously examined the spatio-temporal variation of agricultural efficiency and irrigation intensity in Karnataka,uncovering its significant dependence of agricultural efficiency on irrigation intensity.Specifically,this study used a one-way analysis of variance(ANOVA)to ascertain significant differences in the means of agricultural efficiency and irrigation intensity during 2004-2005 and 2018-2019.This study showed that the maximum improvement in agricultural efficiency index was recorded in Belgaum(40.24),Gulbarga(24.77),and Yadgir districts(22.92)between 2004-2005 and 2018-2019,which indicated the progressing trend and better scope for agriculture extension.On the contrary,some districts expressed threat(a decline of above 20.00 of agricultural efficiency index)and needed special care for the improvement of agricultural efficiency in four northern districts(Bagalkot,Bidar,Raichur,and Bijapur),three southern districts(Chitradurga,Chikballapur and Hassan),and two southern districts(Koppal and Gadag)in Karnataka.During 2004-2005,irrigation intensity varied from 3.19%to 56.39%,with the lowest irrigation intensity in Kodagu District and the highest irrigation intensity in Shimoga District.During 2018-2019,irrigation intensity changed from 0.77%to 72.77%,with the lowest irrigation intensity in Kodagu District and the highest in Dakshin Kannad District.Moreover,the research scrutinized the complex relationship between agricultural efficiency and irrigation intensity,with the correlation coefficient increased from 0.162 during 2004-2005 to 0.255 during 2018-2019.It implies that in both periods,a low positive correlation existed between these two variables.Over time,several factors(high-yield seeds and chemical fertilizers)other than irrigation intensity gradually became essential for agricultural efficiency.This research offers a wealth of valuable insights for regional planners and policy-makers contending with comparable challenges in various regions of India and other developing countries.
文摘Earthquake is a disastrous natural hazard that threatens numerous cities worldwide.The interval between the foreshock and the main event can sometimes last several minutes.Meanwhile,crowd emergency evacuation and finding shelter are vital for search and rescue managers.At the same time,many unpredicted challenges,such as the sudden increase in travel demand,shifts in public behavior,and the change in the regular transport supply,may arise due to evacuation conditions,which lead to different situations.This paper aims to introduce an approach for quick decision-making and timely evacuation response required by establishing a situation-aware system to minimize these risks and ensure the success of the evacuation plans,to support and predict current and future actions within the dynamic space of the crisis.The main contribution is innovating a Situation-Aware Emergency Evacuation(SAEE)model to enable crisis managers and evacuees to make the right decisions by providing timely and reliable information about the situation.This method is utilized in two situations:designing the emergency evacuation plan and finding the shortest/safest routes to reduce travel time for evacuees.Therefore,a hybrid approach is introduced,which involves a Fuzzy Inference System(FIS)and Deep Long Short-Term Memory(DLSTM)algorithm to identify,infer,and extract the existing situation at different levels(e.g.people,vehicles,and surroundings)after a foreshock using multi-agent-based simulation.The method proposed was simulated in the traffic network of District 6 of Tehran,the capital of Iran.The model results show that the evacuees'spatial knowledge and perception,as well as awareness of the situation of other agents and their surroundings,led to a significant(40%)reduction in the complete evacuation time.This time is considered the most pivotal factor in saving human lives and their arrival in safer areas.The role of situation awareness systems and increasing human cognition and perception can significantly help in this matter.
文摘Yopougon, located in the western part of the Autonomous District of Abidjan, is the most heavily populated municipality in Côte d’Ivoire. However, this area is prone to floods and landslides during the rainy season. The study aims to assess recent flood risks in the municipality of Yopougon of the Autonomous District of Abidjan. To achieve this objective, the study analyzed two types of data: daily rainfall from 1971 to 2022 and parameters derived from a Numerical Field and Altitude Model (NFAM). The study examined six rainfall parameters using statistical analysis and combined land use maps obtained from the NFAM of Yopougon. The results indicated that, in 67% of cases, extreme rainfall occurred mainly between week 3 of May and week 1 of July. The peak of extreme rainfall was observed in week 2 of June with 15% of cases. These are critical periods of flood risks in the Autonomous District of Abidjan, especially in Yopougon. In addition, there was variability of rainfall parameters in the Autonomous District of Abidjan. This was characterized by a drop of annual and seasonal rainfall, and an increase of numbers of rainy days. Flood risks in Yopougon are, therefore, due to the regular occurrence of rainy events. Recent floods in Yopougon were caused by normal rains ranging from 55 millimeters (mm) to 153 mm with a return period of less than five years. Abnormal heavy rains of a case study on June 20-21, 2022 in Yopougon were detected by outputs global climate models. Areas of very high risk of flood covered 18% of Yopougon, while 31% were at high risk. Climate information from this study can assist authorities to take in advance adaptation and management measures.
文摘In this study,the impact of the training sample selection method on the performance of fuzzy-based Possibilistic c-means(PCM)and Noise Clustering(NC)classifiers were examined and mapped the cumin and fennel rabi crop.Two training sample selection approaches that have been investigated in this study are“mean”and“individual sample as mean”.Both training sample techniques were applied to the PCM and NC classifiers to classify the two indices approach.Both approaches have been studied to decrease spectral information in temporal data processing.The Modified Soil Adjusted Vegetation Index 2(MSAVI-2)and Class-Based Sensor Independent Modified Soil Adjusted Vegetation Index-2(CBSI-MSAVI-2)have been considered to minimize soil background effects,enhancing vegetation detection accuracy,particularly in areas with sparse vegetation cover.The MMD(MeanMembership Difference)and RMSE(RootMean Square Error)approaches were used to measure the study’s accuracy.To illustrate that the classifier successfully describes classes,cluster validity(SSE)was also performed,and the variance parameter was computed to handle heterogeneity within cumin and fennel crop fields.For the calculation of RMSE,Sentinel-2 data was used as classified,whereas PlanetScope satellite data was utilized as the reference data set.The best result was obtained using the NC classifier with“individual sample as mean”using CBSI-MSAVI-2 temporal indices.For Fuzziness Factor(m)=1.1,the RMSE,MMD,Variance,and SSE values for the NC classifier using“individual sample as mean”on the CBSI-MSAVI-2 temporal indices for cumin were 0.00098,0.00162,0.02857,and 0.97143,respectively and for fennel were 0.00025,0.00248,0.10420,and 3.54286,respectively.
基金Under the auspices of Public Welfare Scientific Research Project of Chinese Ministry of Land and Resource (No. 200911015-2)
文摘In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the positive effects of human activities in the coupled human and natural system(CHANS) by introducing adaptive capacity as an evaluation criterion.A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability:exposure,sensitivity and adaptive capacity.We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China,where drought hazard is the key threat to the CHANS.Specific indices were produced to translate such climate variance and social-economic differences into specific indicators.The results showed that the most exposed regions are the inner land areas,while counties located in the eastern part are potentially the most adaptive ones.Ordos City and Bayannur City are most frequently influenced by multiple climate variances,showing highest sensitivity.Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences.After depiction of the spatial differentiations and analysis of the reasons,climate zones were divided to depict the differences in facing to the drought threats.The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map.Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope.This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management.
基金Under the auspices of National Basic Research Program of China (No. 2010CB833405)National Natural Science Foundation of China (No. 40772118, 49971009)
文摘The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.
基金Under the auspices of the Germany-Hong Kong Joint Research Scheme (No.GER/99-00/01) and the Faculty Re-search Grant of the Hong Kong Baptist University (No.FRG/00-01/I-38)
文摘Hong Kong is a hyper-dense city with 7x10(6) people living in an area of 1100km(2). One way to improve the livability of compacted and congested cities like Hong Kong is through the provision of urban parks, an aspect that has largely been under-researched. This study focuses on how users perceive and utilize various facilities in the Kowloon Park. The findings revealed that the Kowloon Park is one of the most preferred parks in Hong Kong for both local residents and tourists. Users were quite satisfied with the park's facilities. Notably, the most important component of an urban park is its greenery. This is followed by water elements, seating places, and facilities for various recreational activities. The improvements users would like to see in urban parks include good design and management, meeting users' needs, overcoming barriers to use, and providing a high quality and varied experience for different groups in the community. The findings of this study provide a good basis to address park management issues from the users' perspective. In particular, parks should provide easy access, encourage optimum usage and enable complimentary improvements to the environment.
基金financially supported by the National Natural Science Foundation of China(Nos.41671005,41230743 and 41501068)the Distinguished Professor Programme of the Liaoning Province
文摘We present geomorphological evidence for multiple glacial fluctuations during the Quaternary in the Taniantaweng Mountain, which is situated at the transition zone of the southeastern Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. To reconstruct the history of glacial evolution during the Quaternary Glaciation, we present a ~13000 km^2 geomorphologic map(1:440,000) for the Quaternary glaciations, as well as three electron spin resonance(ESR) ages and three optically stimulated luminescence(OSL) ages from the landforms. By integrating these with ages from previous studies, four major glacial advances are identified during marine oxygen isotope stages(MIS) 6, 3, 2 and 1. This glacial chronology is in reasonable agreement with existing glacial chronologies from other parts of the Hengduan Mountains and surrounding mountains. Glaciers had extended to the Yuqu River during the glacial maximum advance(MIS 6), but became successively more restricted from MIS 3 to MIS 1. The glacial distribution show that precipitation brought by the south Asian monsoon might play a primary role in driving glacial advances during the last glacial period in the southeastern Qinghai-Tibet Plateau.
基金China’s Special Funds for Major State Basic Research Project, No.2007CB714406Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-313Foundation of the Chinese State Key Laboratory of Remote Sensing Science, No.KQ060006
文摘This paper used five years (2001-2006) time series of MODIS NDVI images with a 1-km spatial resolution to produce a land cover map of Qinghai Province in China. A classification approach for different land cover types with special emphasis on vegetation, especially on sparse vegetation, was developed which synthesized Decision Tree Classification, Supervised Classification and Unsupervised Classification. The spatial distribution and dynamic change of vegetation cover in Qinghai from 2001 to 2006 were analyzed based on the land cover classification map and five grade elevation belts derived from Qinghai DEM. The result shows that vegetation cover in Qinghai in recent five years has been some improved and the area of vegetation was increased from 370,047 km^2 in 2001 to 374,576 km^2 in 2006. Meanwhile, vegetation cover ratio was increased by 0.63%. Vegetation cover ratio in high mountain belt is the largest (67.92%) among the five grade elevation belts in Qinghai Province. The second largest vegetation cover ratio is in middle mountain belt (61.80%). Next, in the order of the decreasing vegetation cover ratio, the remaining grades are extreme high mountain belt (38.98%), low mountain belt (25.55%) and flat region belt (15.46%). The area of middle density grassland in high mountain belt is the biggest (94,003 km^2), and vegetation cover ratio of dense grassland in middle mountain belt is the highest (32.62%), and the increased area of dense grassland in high mountain belt is the greatest (1280 km^2). In recent five years the conversion from sparse grass to middle density grass in high mountain belt has been the largest vegetation cover variation and the converted area is 15931 km^2.
文摘Ship-based sea ice observation data (concentrations, ice thickness, topography and overlying snow cover) were collected from Middle Weddell Sea to Prydz Bay, Antarctic during the period of 4 to 17 Jan 2003. Antarctic ice chart of first week of Jan 2003 was derived from National Ice Center (NIC). The compared analysis of sea ice concentrations and thickness distributions were conducted though in situ data and NIC chart. Results from sea ice concentration-analysis indicated the presence of large-scale open water between 2000 and 4100 km along transit route resulted from sea ice drifting. We describe the existence of mostly smooth first-year sea ice in study region ranged between 30 and 120 cm. We also display the derived overlying snow coverage. Our results reveal the strong correspondence between ship-based observations and remotely sensed ice charts whatever in ice concentrations and ice thickness distributions.
基金supported by the Federal German Ministry of Education and Research (BMBF) (No. 03 G 0669)coordinated by the German Jülich Research Centre (FZJ)
文摘Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFvc) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFvc range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using CLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to bemore reliable than the C factor based on the fractional vegetation cover.
基金the Ministry of Science and Technology of China through public welfare funding under Grant No.2002DIB20070China Meteorological Administration Grant CCSF 2005-1the National Natural Science Foundation Grant NSF-ATM-0353606
文摘Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.
基金jointly funded by National Natural Science Foundation of China (41571002)Natural Science Foundation of Guangdong, China (2015A030313385)Foundation for the Young Creative Talent Foundation in Higher Education of Guangdong, China (2014KQNCX193)
文摘The Mushroom Stone Forest, which consists of granite boulders looking like mushrooms with flared sidewalls, is located in eastern Guangdong China, and is a famous scenic spot that draws many tourists each year. The Mushroom Stone Forest has been traditionally recognized as a collection of wave erosion landforms and used for the reconstruction of palaeo-sea-level changes along the coastal areas of eastern Guangdong in previous coastal researches. By combining in situ measurements of the aspect,vertical profile and height of boulder sidewalls,palaeo-coastal wave direction estimation, rock density determination, major elemental analysis, and petrographic thin section analysis, this paper presents an alternative origin for the Mushroom Stone Forest.Our results suggest that wave or wind erosion cannot offer a satisfactory explanation for the formation of the Mushroom Stone Forest; The boulders that make up the Mushroom Stone Forest originated from the corestones in the granite weathering crusts of the Little Sangpu Mountain; When the debris of the weathering crust was removed, the corestones are perched on rocky outcrops or half-buried by weathering debris beneath the natural land surface;The flared sidewall (concave vertical profile) of the boulders is a particular form developed in the foot zone of a half-buried boulder through increased chemical weathering beneath the land surface. A recent exposed half-buried boulder found in the study area provides convincing evidence to support this argument. Sea water reached the foot of the Sangpu Mountain during the Holocene transgression, but it merely provided a mechanism to erode the weathering debris from the bottom of the mushroom rocks and enhanced salt weathering that created tafoni on the boulders. These findings demonstrate that the boulders of the Mushroom Stone Forest are not sea stacks and cannot be served as a palaeo-sea-level indicator.