Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to ...Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to achieve efficient curing,which has become the bottleneck of large-scale field application.This paper reviews the research status,hot spots,difficulties and future development direction microbial induced calcium carbonate precipitation(MICP)technology.The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized.The solidification efficiency is mainly affected by the reactant itself and the external environment.At present,the MICP technology has been preliminarily applied in the fields of soil solidification,crack repair,anti-seepage treatment,pollution repair and microbial cement.However,the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization,uneconomical reactants,short microbial activity period and large environmental interference,incidental toxicity of metabolites and poor field application.Future directions include improving the uniformity of mineralization by improving grouting methods,improving urease persistence by improving urease activity,and improving the adaptability of bacteria to the environment by optimizing bacterial species.Finally,the authors point out the economic advantages of combining soybean peptone,soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO3.展开更多
Rock slope along motorways in the Higher Himalayan terrains are prone to various types of failure.In order to effectively mitigate these failures,a thorough assessment of rock mass behavior is entailed.The present res...Rock slope along motorways in the Higher Himalayan terrains are prone to various types of failure.In order to effectively mitigate these failures,a thorough assessment of rock mass behavior is entailed.The present research employs and compares widely practiced geo-mechanical classification schemes viz.,RQD,RMR,SMR,Q-slope,and GSI.A 23 km road cut section,along Sangla to Chitkul route,in Higher Himalayan region(India)has been taken up for this work.Total of 18 locations were selected,and their slope and rockmass properties were examined.Afterwards,the most influencing parameters in RMR,SMR,and Q-Slope were evaluated through a machine learning algorithm,i.e.,Random Forest.For RMRbasic,about 83%of rock-slopes were designated in good condition and rest were of Fair quality.Evaluation of slope mass rating along all 18-locations highlighted eight-sites as partially unstable,six-sites as partially stable.Remaining four locations varied between,Very Bad to Bad slope-conditions,necessitating the installation of mechanical supports and redesign of slopes.For SMR classification,feature importance analysis revealed the predominance of F3 variable,RQD and intact rock strength.Q-Slope approach was incorporated to identify the most stable steepest angle of the examined locations.For Q-Slope rating,Jn and RQD were found to have the most influence in classification of the slopes.Three zones on the basis of GSI-scores have been identified in the study area,i.e.,A(6595),B(4555),and C(2535).This study highlights the application of multiple geomechanical classification schemes,demonstrating how each approach can complement the others.展开更多
Geo-monitoring provides quantitative and reliable information to identify hazards and adopt appropriate measures timely.However,this task inherently exposes monitoring staff to hazardous environments,especially in und...Geo-monitoring provides quantitative and reliable information to identify hazards and adopt appropriate measures timely.However,this task inherently exposes monitoring staff to hazardous environments,especially in underground settings.Since 2000s,robots have been widely applied in various fields and many studies have focused on establishing autonomous mobile robotic systems as well as solving the issue of underground navigation and mapping.However,only a few studies have conducted quantitative evaluations of these methods,and almost none have provided a systematic and comprehensive assessment of the suitability of mapping robots for underground geo-monitoring.In this study,a methodology for objective and quantitative assessment of the applicability of SLAM methods in underground geo-monitoring is proposed.This involves the development of an underground test field and some specific metrics,which allow detailed local accuracy analysis of point measurements,line segments,and areas using artificial targets.With this proposed methodology,a series of repeated experimental measurements has been performed with an autonomous driving robot and the selected LiDAR-and visual-based SLAM methods.The resulting point cloud was compared with the reference data measured by a total station and a terrestrial laser scanner.The accuracy and precision of the selected SLAM methods as well as the verifiability and reliability of the results are evaluated and discussed by analysing quantities such as the deviations of the control points coordinates,cloudto-cloud distances between the test and reference point cloud,normal vector,centre point coordinates and area of the planar objects.The results demonstrate that the HDL Graph SLAM achieves satisfactory precision,accuracy,and repeatability with a mean cloud-to-cloud distance of 0.12 m(with a standard deviation of 0.13 m)in an 80 m closed-loop measurement area.Although RTAB-Map exhibits better plane-capturing capabilities,the measurement results reveal instability and inaccuracies.展开更多
Fissured clays exhibit unique geotechnical behaviors,with the stiffness characteristics evolving dynamically in response to environmental changes.To address this issue,reported here is a systematic assessment of how d...Fissured clays exhibit unique geotechnical behaviors,with the stiffness characteristics evolving dynamically in response to environmental changes.To address this issue,reported here is a systematic assessment of how dryingewetting(DW)cycles affect the small-strain stiffness characteristics of fissured clay.Resonant column tests are taken to examine the nonlinear attenuation behavior of the small-strain shear modulus(SSSM)and damping ratio of fissured clay under various DW cycle and consolidation pressure(25e200 kPa)conditions.Scanning electron microscopy(SEM)and computed tomography(CT)are employed to reveal the microstructure of fissured clay.The HardineDrnevich(H-D)model is used to describe the decay law of its SSSM,and the small strain stiffness characteristics of fissured soil are analyzed in view of damage mechanics.The results show that the SSSM of the fissured clay decreases as the DWcycles increase,with the greatest attenuation at original soil state.The damping ratio exhibits an incremental trend with escalating strain and a higher number of DW cycles.Regarding damage,DW cycles can lead to the formation of microcracks in the sample,and the aggregates disperse into smaller aggregates,which then aggregates again,resulting in structural damage.The damage variables of the samples under various confining pressures and DW cycles are analyzed based on the principle of strain damage.Finally,the volume changes and the distribution of different pore sizes obtained through CT are analyzed to investigate the stiffness attenuation under DW cycles.Additionally,the study examines the propagation direction of secondary cracks induced by primary fissures,which will play an important role in reduction of the stiffness.Our investigations contribute to understanding of soil mechanics and practical applications in areas where fissured clay is prevalent.展开更多
Despite the prevalence and validity of the universal distinct element code(UDEC)in simulations in geotechnics domain,water-weakening process of rock models remains elusive.Prior research has made positive contribution...Despite the prevalence and validity of the universal distinct element code(UDEC)in simulations in geotechnics domain,water-weakening process of rock models remains elusive.Prior research has made positive contributions to a presupposed link between modelling parameters and saturation degree,Sr.Nevertheless,this effort presents inaccurate results and limited implications owing to the misleading interpretation,that is,devoid of the basic logic in UDEC that modelling parameters should be calibrated by tested macroscopic properties in contrast to a presupposed relation with Sr.To fill this gap,a new methodology is proposed by coupling a computationally efficient parametric study with the simulation of water-weakening mechanisms.More specifically,tested macroscopic properties with different Sr values are input into parametric relations to acquire initial modelling parameters that are sequentially calibrated and modulated until simulations are in line with geomechanical tests.Illustrative example reveals that numerical water-weakening effects on macroscopic properties,mechanical behaviours,and failure configurations are highly consistent with tested ones with noticeable computational expediency,implying the feasibility and simplicity of this methodology.Furthermore,with compatibility across various numerical models,the proposed methodology substantially extends the applicability of UDEC in simulating water-weakening geotechnical problems.展开更多
This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques strug...This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques struggle with slow convergence and suboptimal solutions due to complex,nonlinear natures.The Sperm Swarm Optimization(SSO)algorithm,which mimics the sperm’s movement to reach an egg,is one such technique.To improve SSO,researchers combined it with three strategies:opposition-based learning(OBL),Cauchy mutation(CM),and position clamping.OBL introduces diversity to SSO by exploring opposite solutions,speeding up convergence.CM enhances both exploration and exploitation capabilities throughout the optimization process.This combined approach,RSSO,has been rigorously tested on standard benchmark functions,real-world engineering problems,and through statistical analysis(Wilcoxon test).The results demonstrate that RSSO significantly outperforms other optimization algorithms,achieving faster convergence and better solutions.The paper details the RSSO algorithm,discusses its implementation,and presents comparative results that validate its effectiveness in solving complex engineering design challenges.展开更多
Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of...Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of overlying shallow foundations.In this study,the undrained bearing capacity of shallow foundations resting on inhomogeneous and anisotropic clay layers subjected to oblique-eccentric combined loading is investigated through a comprehensive series of finite element limit analysis(FELA)based on the well-established lower-bound theorem and second-order cone programming(SOCP).The heterogeneity of normally consolidated(NC)clays is simulated by adopting a well-known general model of undrained shear strength increasing linearly with depth.In contrast,for overconsolidated(OC)clays,the variation of undrained shear strength with depth is considered to follow a bilinear trend.Furthermore,the inherent anisotropy is accounted for by adopting different values of undrained shear strength along different directions within the soil medium,employing an iterative-based algorithm.The results of numerical simulations are utilized to investigate the influences of natural soil heterogeneity and inherent anisotropy on the ultimate bearing capacity,failure envelope,and failure mechanism of shallow foundations subjected to the various combinations of vertical-horizontal(V-H)and vertical-moment(V-M)loads.展开更多
The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age roc...The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age rocks bear organic-rich sediments in these basins,including lignite and carbonaceous shale deposits.The present research investigates the source rock properties,petroleum potential and thermal maturity of the carbonaceous shale partings from the lignite mines of Gurha(Bikaner-Nagaur Basin)and Kapurdi(Barmer Basin)using petrographical and geochemical tools.The carbonaceous shales have high organic matter(OM),with considerable total organic carbon(TOC)contents ranging from 13%to 39%.Furthermore,they contain hydrogen-rich kerogen,including types II and II/III,as evidenced by the Rock-Eval and elemental analysis results.The existence of these kerogen types indicates the abundance of reactive(vitrinite and liptinite)macerals.However,the carbonaceous shales from the Bikaner–Nagaur Basin have oil generation potentials,with a high hydrogen index(up to 516 mg HC/g TOC)and a H/C ratio(up to 1.5)along with a significant presence of oil-prone liptinitic macerals.Apart from the geochemical and petrological results,the studied shales have low huminite reflectance(0.31%–0.48%),maximum temperature(S_(2) peak;Tmax)between 419℃ and 429℃,and low production index values(PI:0.01–0.03).These results indicate that these carbonaceous shales contain immature OM,and thereby,they cannot yet release commercial amount of oil.This immaturity level in the studied outcrop section is due to the shallow burial depth.Geochemical proxies further indicate the presence of both oil and gas-prone source rocks.展开更多
The increasing demand for unconventional oil and gas resources,especially oil shale,has highlighted the urgent need to develop rapid and accurate strata characterization methods.This paper is the first case and examin...The increasing demand for unconventional oil and gas resources,especially oil shale,has highlighted the urgent need to develop rapid and accurate strata characterization methods.This paper is the first case and examines the drilling process monitoring(DPM)method as a digital,accurate,cost-effective method to characterize oil shale reservoirs in the Ordos Basin,China.The digital DPM method provides real-time in situ testing of the relative variation in rock mechanical strength along the drill bit depth.Furthermore,it can give a refined rock quality designation based on the DPM zoning result(RQD(V_(DPM)))and a strength-grade characterization at the site.Oil shale has high heterogeneity and low strata strength.The digital results are further compared and verified with manual logging,cored samples,and digital panoramic borehole cameras.The findings highlight the innovative potential of the DPM method in identifying the zones of oil shale reservoir along the drill bit depth.The digital results provide a better understanding of the oil shale in Tongchuan and the potential for future oil shale exploration in other regions.展开更多
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ...As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.展开更多
Clarify the mechanical properties of different laminations and the fracture mechanism of continental shale under in-situ stress can provide theoretical basis for more comprehensive evaluation of the fracability of con...Clarify the mechanical properties of different laminations and the fracture mechanism of continental shale under in-situ stress can provide theoretical basis for more comprehensive evaluation of the fracability of continental shale oil reservoir.The Chang 72continental shale was used to investigate the mechanical properties of laminations and the effect of natural structure on the crack propagation of the shale.The XRD and thin section tests show that the laminations contain two types:bright sandy lamination with void structure and dark muddy lamination with layer structure.The real-time CT uniaxial compression tests were conducted to investigate the differences of mechanical properties between the muddy lamination and sandy lamination.It found that the uniaxial compression strength and elastic modulus of the sandy lamination are higher,forming a simple crack with large opening,and the Poisson's ratio of the muddy lamination is large,forming obvious lateral deformation and more secondary cracks.On this basis,the cuboid-shaped continental shale specimens were tested under true triaxial compression conditions to study the effect of laminations and interface cracks on crack propagation combining AE and CT techniques.It found that nascent cracks connected laminations and interface cracks to form fracture network under appropriate loading condition,tensile cracks developed in sandy lamination and shear cracks occurred in muddy lamination because of deformation dissonance and brittleness index differences,and more secondary cracks formed in muddy lamination with smaller fracture toughness.Moreover,the combination relationships between nascent and natural cracks mainly conclude direct penetration and deflection,which is affected by the filling degree and morphology of interface cracks and the relationship of lamination types.These conclusions show that laminar continental shale is conducive to forming complex fracture network,which can provide a theoretical basis for the proposal of indicators and methods for fracability evaluation.展开更多
Natural gas hydrates are crystalline solid complexes with different morphologies found in marine sediments and permafrost zones. The petrophysical properties of gas hydrate-bearing sediments(GHBS) are crucial for unde...Natural gas hydrates are crystalline solid complexes with different morphologies found in marine sediments and permafrost zones. The petrophysical properties of gas hydrate-bearing sediments(GHBS) are crucial for understanding the characteristics of gas hydrate reservoirs, the spatial distribution of natural gas hydrates, and their exploitation potential. Geophysical exploration remains the primary approach for investigating the petrophysical properties of GHBS. However, limitations in resolution make it challenging to accurately characterize complex sediment structures, leading to difficulties in precisely interpreting petrophysical properties. Laboratory-based petrophysical experiments provide highly accurate results for petrophysical properties. Despite their accuracy, these experiments are costly, and difficulties in controlling variables may introduce uncertainties into geophysical exploration models.Advances in imaging and simulation techniques have established digital rock technology as an indispensable tool for enhancing petrophysical experimentation. This technology offers a novel microscopic perspective for elucidating the three-dimensional(3D) spatial distribution and multi-physical responses of GHBS. This paper presents an in-depth discussion of digital rock technology as applied to GHBS, with an emphasis on digital rock reconstruction and simulation of petrophysical properties. First, we summarize two common methods for constructing digital rocks of GHBS: petrophysical experimental methods and numerical reconstruction methods, followed by analyses of their respective advantages and limitations. Next, we delve into numerical simulation methods for evaluating GHBS petrophysical properties, including electrical, elastic, and fluid flow characteristics. Finally, we conduct a comprehensive analysis of the current trends in digital rock reconstruction and petrophysical simulation techniques for GHBS, emphasizing the necessity of multi-scale, multi-component, high-resolution 3D digital rock models to facilitate the precise characterization of complex gas hydrate reservoirs. Future applications of microscopic digital rock technology should be integrated with macroscopic geophysical exploration to enable more comprehensive and precise analyses of GHBS petrophysical properties.展开更多
The prediction of slope stability is a complex nonlinear problem.This paper proposes a new method based on the random forest(RF)algorithm to study the rocky slopes stability.Taking the Bukit Merah,Perak and Twin Peak(...The prediction of slope stability is a complex nonlinear problem.This paper proposes a new method based on the random forest(RF)algorithm to study the rocky slopes stability.Taking the Bukit Merah,Perak and Twin Peak(Kuala Lumpur)as the study area,the slope characteristics of geometrical parameters are obtained from a multidisciplinary approach(consisting of geological,geotechnical,and remote sensing analyses).18 factors,including rock strength,rock quality designation(RQD),joint spacing,continuity,openness,roughness,filling,weathering,water seepage,temperature,vegetation index,water index,and orientation,are selected to construct model input variables while the factor of safety(FOS)functions as an output.The area under the curve(AUC)value of the receiver operating characteristic(ROC)curve is obtained with precision and accuracy and used to analyse the predictive model ability.With a large training set and predicted parameters,an area under the ROC curve(the AUC)of 0.95 is achieved.A precision score of 0.88 is obtained,indicating that the model has a low false positive rate and correctly identifies a substantial number of true positives.The findings emphasise the importance of using a variety of terrain characteristics and different approaches to characterise the rock slope.展开更多
Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock propert...Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock properties.Given the multiscale characteristics of rock pore structures,direct three-dimensional imaging at sub-micrometer and nanometer scales is typically infeasible.This study introduces a method for reconstructing porous media using multidimensional data,which combines one-dimensional pore structure parameters with two-dimensional images to reconstruct three-dimensional models.The pore network model(PNM)is stochastically reconstructed using one-dimensional parameters,and a generative adversarial network(GAN)is utilized to equip the PNM with pore morphologies derived from two-dimensional images.The digital rocks generated by this method possess excellent controllability.Using Berea sandstone and Grosmont carbonate samples,we performed digital rock reconstructions based on PNM extracted by the maximum ball algorithm and compared them with stochastically reconstructed PNM.Pore structure parameters,permeability,and formation factors were calculated.The results show that the generated samples exhibit good consistency with real samples in terms of pore morphology,pore structure,and physical properties.Furthermore,our method effectively supplements the micropores not captured in CT images,demonstrating its potential in multiscale carbonate samples.Thus,the proposed reconstruction method is promising for advancing porous media property research.展开更多
Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid i...Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid identification of landslides is important for disaster prevention and control;however,currently,landslide identification relies mainly on the manual interpretation of remote sensing images.Manual interpretation and feature recognition methods are time-consuming,labor-intensive,and challenging when confronted with complex scenarios.Consequently,automatic landslide recognition has emerged as a pivotal avenue for future development.In this study,a dataset comprising 2000 landslide images was constructed using open-source remote sensing images and datasets.The YOLOv7 model was enhanced using data augmentation algorithms and attention mechanisms.Three optimization models were formulated to realize automatic landslide recognition.The findings demonstrate the commendable performance of the optimized model in automatic landslide recognition,achieving a peak accuracy of 95.92%.Subsequently,the optimized model was applied to regional landslide identification,co-seismic landslide identification,and landslide recognition at various scales,all of which showed robust recognition capabilities.Nevertheless,the model exhibits limitations in detecting small targets,indicating areas for refining the deep-learning algorithms.The results of this research offer valuable technical support for the swift identification,prevention,and mitigation of landslide disasters.展开更多
After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical ...After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.展开更多
Sensors,vital elements in data acquisition systems,play a crucial role in various industries.However,their exposure to harsh operating conditions makes them vulnerable to faults that can compromise system performance....Sensors,vital elements in data acquisition systems,play a crucial role in various industries.However,their exposure to harsh operating conditions makes them vulnerable to faults that can compromise system performance.Early fault detection is therefore critical for minimizing downtime and ensuring system reliability.This paper delves into the contemporary landscape of fault diagnosis techniques for sensors,offering valuable insights for researchers and academicians.The papers begin by exploring the different types and causes of sensor faults,followed by a discussion of the various fault diagnosis methods employed in industrial sectors.The advantages and limitations of these methods are carefully examined,paving the way for highlighting current challenges and outlining potential future research directions.This comprehensive review aims to provide a thorough understanding of current advancements in sensor fault diagnosis,enabling readers to stay abreast of the latest developments in this rapidly evolving field.By addressing the challenges and exploring promising research avenues,this paper seeks to contribute to the development of more robust and effective sensor fault diagnosis methods,ultimately improving the reliability and safety of industrial and agricultural systems.展开更多
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ...Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.展开更多
The Sichuan-Xizang transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on di...The Sichuan-Xizang transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Xizang transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Xizang transportation corridor.展开更多
This study presents the classification and prediction of severity for brittle rock failure,focusing on failure behaviors and excessive determination based on damage depth.The research utilizes extensive field survey d...This study presents the classification and prediction of severity for brittle rock failure,focusing on failure behaviors and excessive determination based on damage depth.The research utilizes extensive field survey data from the Shuangjiangkou Hydropower Station and previous research findings.Based on field surveys and previous studies,four types of brittle rock failure with different failure mechanisms are classified,and then a prediction method is proposed.This method incorporates two variables,i.e.Kv(modified rock mass integrity coefficient)and GSI(geological strength index).The prediction method is applied to the first layer excavation of the powerhouse cavern of Shuangjiangkou Hydropower Station.The results show that the predicted brittle rock failure area agrees with the actual failure area,demonstrating the method’s applicability.Next,it extends to investigate brittle rock failure in two locations.The first is the k0-890 m section of the traffic cavern,and the second one is at K0-64 m of the main powerhouse.The criterion-based prediction indicates a severity brittle rock failure in the K0-890 m section,and a moderate brittle rock failure in the K0-64 m section,which agrees with the actual occurrence of brittle rock failure in the field.The understanding and application of the prediction method using Kv and GSI are vital for implementing a comprehensive brittle rock failure prediction process in geological engineering.To validate the adaptability of this criterion across diverse tunnel projects,a rigorous verification process using statistical findings was conducted.The assessment outcomes demonstrate high accuracy for various tunnel projects,allowing establishment of the correlations that enable valuable conclusions regarding brittle rock failure occurrence.Further validation and refinement through field and laboratory testing,as well as simulations,can broaden the contribution of this method to safer and more resilient underground construction.展开更多
基金This work was financed by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)the Key Research and Development Plan of Yunnan Province(Grant No.202103AA080013).
文摘Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to achieve efficient curing,which has become the bottleneck of large-scale field application.This paper reviews the research status,hot spots,difficulties and future development direction microbial induced calcium carbonate precipitation(MICP)technology.The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized.The solidification efficiency is mainly affected by the reactant itself and the external environment.At present,the MICP technology has been preliminarily applied in the fields of soil solidification,crack repair,anti-seepage treatment,pollution repair and microbial cement.However,the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization,uneconomical reactants,short microbial activity period and large environmental interference,incidental toxicity of metabolites and poor field application.Future directions include improving the uniformity of mineralization by improving grouting methods,improving urease persistence by improving urease activity,and improving the adaptability of bacteria to the environment by optimizing bacterial species.Finally,the authors point out the economic advantages of combining soybean peptone,soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO3.
基金Anusandhan National Research Foundation(ANRF)(previously,Science and Engineering Research Board-SERB),India for the grant CRG/2022/002509.
文摘Rock slope along motorways in the Higher Himalayan terrains are prone to various types of failure.In order to effectively mitigate these failures,a thorough assessment of rock mass behavior is entailed.The present research employs and compares widely practiced geo-mechanical classification schemes viz.,RQD,RMR,SMR,Q-slope,and GSI.A 23 km road cut section,along Sangla to Chitkul route,in Higher Himalayan region(India)has been taken up for this work.Total of 18 locations were selected,and their slope and rockmass properties were examined.Afterwards,the most influencing parameters in RMR,SMR,and Q-Slope were evaluated through a machine learning algorithm,i.e.,Random Forest.For RMRbasic,about 83%of rock-slopes were designated in good condition and rest were of Fair quality.Evaluation of slope mass rating along all 18-locations highlighted eight-sites as partially unstable,six-sites as partially stable.Remaining four locations varied between,Very Bad to Bad slope-conditions,necessitating the installation of mechanical supports and redesign of slopes.For SMR classification,feature importance analysis revealed the predominance of F3 variable,RQD and intact rock strength.Q-Slope approach was incorporated to identify the most stable steepest angle of the examined locations.For Q-Slope rating,Jn and RQD were found to have the most influence in classification of the slopes.Three zones on the basis of GSI-scores have been identified in the study area,i.e.,A(6595),B(4555),and C(2535).This study highlights the application of multiple geomechanical classification schemes,demonstrating how each approach can complement the others.
基金supported by the German Academic Scholarship Foundation,the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation,Project number 422117092)the Saxon Ministry of Science and Arts.
文摘Geo-monitoring provides quantitative and reliable information to identify hazards and adopt appropriate measures timely.However,this task inherently exposes monitoring staff to hazardous environments,especially in underground settings.Since 2000s,robots have been widely applied in various fields and many studies have focused on establishing autonomous mobile robotic systems as well as solving the issue of underground navigation and mapping.However,only a few studies have conducted quantitative evaluations of these methods,and almost none have provided a systematic and comprehensive assessment of the suitability of mapping robots for underground geo-monitoring.In this study,a methodology for objective and quantitative assessment of the applicability of SLAM methods in underground geo-monitoring is proposed.This involves the development of an underground test field and some specific metrics,which allow detailed local accuracy analysis of point measurements,line segments,and areas using artificial targets.With this proposed methodology,a series of repeated experimental measurements has been performed with an autonomous driving robot and the selected LiDAR-and visual-based SLAM methods.The resulting point cloud was compared with the reference data measured by a total station and a terrestrial laser scanner.The accuracy and precision of the selected SLAM methods as well as the verifiability and reliability of the results are evaluated and discussed by analysing quantities such as the deviations of the control points coordinates,cloudto-cloud distances between the test and reference point cloud,normal vector,centre point coordinates and area of the planar objects.The results demonstrate that the HDL Graph SLAM achieves satisfactory precision,accuracy,and repeatability with a mean cloud-to-cloud distance of 0.12 m(with a standard deviation of 0.13 m)in an 80 m closed-loop measurement area.Although RTAB-Map exhibits better plane-capturing capabilities,the measurement results reveal instability and inaccuracies.
基金the financial support of the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Fissured clays exhibit unique geotechnical behaviors,with the stiffness characteristics evolving dynamically in response to environmental changes.To address this issue,reported here is a systematic assessment of how dryingewetting(DW)cycles affect the small-strain stiffness characteristics of fissured clay.Resonant column tests are taken to examine the nonlinear attenuation behavior of the small-strain shear modulus(SSSM)and damping ratio of fissured clay under various DW cycle and consolidation pressure(25e200 kPa)conditions.Scanning electron microscopy(SEM)and computed tomography(CT)are employed to reveal the microstructure of fissured clay.The HardineDrnevich(H-D)model is used to describe the decay law of its SSSM,and the small strain stiffness characteristics of fissured soil are analyzed in view of damage mechanics.The results show that the SSSM of the fissured clay decreases as the DWcycles increase,with the greatest attenuation at original soil state.The damping ratio exhibits an incremental trend with escalating strain and a higher number of DW cycles.Regarding damage,DW cycles can lead to the formation of microcracks in the sample,and the aggregates disperse into smaller aggregates,which then aggregates again,resulting in structural damage.The damage variables of the samples under various confining pressures and DW cycles are analyzed based on the principle of strain damage.Finally,the volume changes and the distribution of different pore sizes obtained through CT are analyzed to investigate the stiffness attenuation under DW cycles.Additionally,the study examines the propagation direction of secondary cracks induced by primary fissures,which will play an important role in reduction of the stiffness.Our investigations contribute to understanding of soil mechanics and practical applications in areas where fissured clay is prevalent.
基金supported by the National Natural Science Foundation of China under Grant Nos.41977249 and 42090052the China Scholarship Council under file No.202204910040.
文摘Despite the prevalence and validity of the universal distinct element code(UDEC)in simulations in geotechnics domain,water-weakening process of rock models remains elusive.Prior research has made positive contributions to a presupposed link between modelling parameters and saturation degree,Sr.Nevertheless,this effort presents inaccurate results and limited implications owing to the misleading interpretation,that is,devoid of the basic logic in UDEC that modelling parameters should be calibrated by tested macroscopic properties in contrast to a presupposed relation with Sr.To fill this gap,a new methodology is proposed by coupling a computationally efficient parametric study with the simulation of water-weakening mechanisms.More specifically,tested macroscopic properties with different Sr values are input into parametric relations to acquire initial modelling parameters that are sequentially calibrated and modulated until simulations are in line with geomechanical tests.Illustrative example reveals that numerical water-weakening effects on macroscopic properties,mechanical behaviours,and failure configurations are highly consistent with tested ones with noticeable computational expediency,implying the feasibility and simplicity of this methodology.Furthermore,with compatibility across various numerical models,the proposed methodology substantially extends the applicability of UDEC in simulating water-weakening geotechnical problems.
文摘This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques struggle with slow convergence and suboptimal solutions due to complex,nonlinear natures.The Sperm Swarm Optimization(SSO)algorithm,which mimics the sperm’s movement to reach an egg,is one such technique.To improve SSO,researchers combined it with three strategies:opposition-based learning(OBL),Cauchy mutation(CM),and position clamping.OBL introduces diversity to SSO by exploring opposite solutions,speeding up convergence.CM enhances both exploration and exploitation capabilities throughout the optimization process.This combined approach,RSSO,has been rigorously tested on standard benchmark functions,real-world engineering problems,and through statistical analysis(Wilcoxon test).The results demonstrate that RSSO significantly outperforms other optimization algorithms,achieving faster convergence and better solutions.The paper details the RSSO algorithm,discusses its implementation,and presents comparative results that validate its effectiveness in solving complex engineering design challenges.
文摘Clay deposits typically exhibit significant degrees of heterogeneity and anisotropy in their strength and stiffness properties.Such non-monotonic responses can significantly impact the stability analysis and design of overlying shallow foundations.In this study,the undrained bearing capacity of shallow foundations resting on inhomogeneous and anisotropic clay layers subjected to oblique-eccentric combined loading is investigated through a comprehensive series of finite element limit analysis(FELA)based on the well-established lower-bound theorem and second-order cone programming(SOCP).The heterogeneity of normally consolidated(NC)clays is simulated by adopting a well-known general model of undrained shear strength increasing linearly with depth.In contrast,for overconsolidated(OC)clays,the variation of undrained shear strength with depth is considered to follow a bilinear trend.Furthermore,the inherent anisotropy is accounted for by adopting different values of undrained shear strength along different directions within the soil medium,employing an iterative-based algorithm.The results of numerical simulations are utilized to investigate the influences of natural soil heterogeneity and inherent anisotropy on the ultimate bearing capacity,failure envelope,and failure mechanism of shallow foundations subjected to the various combinations of vertical-horizontal(V-H)and vertical-moment(V-M)loads.
基金The University of Malaya's postdoctoral fellowship program has been acknowledged by the first author and is associated with grant number IF064-2019the Department of Science and Technology (Project No. SB/S4/ES-681/2013), Government of India, for their supportthe Researchers Supporting Project number (RSPD2024R546) at King Saud University in Riyadh, Saudi Arabia
文摘The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age rocks bear organic-rich sediments in these basins,including lignite and carbonaceous shale deposits.The present research investigates the source rock properties,petroleum potential and thermal maturity of the carbonaceous shale partings from the lignite mines of Gurha(Bikaner-Nagaur Basin)and Kapurdi(Barmer Basin)using petrographical and geochemical tools.The carbonaceous shales have high organic matter(OM),with considerable total organic carbon(TOC)contents ranging from 13%to 39%.Furthermore,they contain hydrogen-rich kerogen,including types II and II/III,as evidenced by the Rock-Eval and elemental analysis results.The existence of these kerogen types indicates the abundance of reactive(vitrinite and liptinite)macerals.However,the carbonaceous shales from the Bikaner–Nagaur Basin have oil generation potentials,with a high hydrogen index(up to 516 mg HC/g TOC)and a H/C ratio(up to 1.5)along with a significant presence of oil-prone liptinitic macerals.Apart from the geochemical and petrological results,the studied shales have low huminite reflectance(0.31%–0.48%),maximum temperature(S_(2) peak;Tmax)between 419℃ and 429℃,and low production index values(PI:0.01–0.03).These results indicate that these carbonaceous shales contain immature OM,and thereby,they cannot yet release commercial amount of oil.This immaturity level in the studied outcrop section is due to the shallow burial depth.Geochemical proxies further indicate the presence of both oil and gas-prone source rocks.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Grant No.HKU 7137/03E)the National Natural Science Foundation of China(Grant No.41977248)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB10030100).
文摘The increasing demand for unconventional oil and gas resources,especially oil shale,has highlighted the urgent need to develop rapid and accurate strata characterization methods.This paper is the first case and examines the drilling process monitoring(DPM)method as a digital,accurate,cost-effective method to characterize oil shale reservoirs in the Ordos Basin,China.The digital DPM method provides real-time in situ testing of the relative variation in rock mechanical strength along the drill bit depth.Furthermore,it can give a refined rock quality designation based on the DPM zoning result(RQD(V_(DPM)))and a strength-grade characterization at the site.Oil shale has high heterogeneity and low strata strength.The digital results are further compared and verified with manual logging,cored samples,and digital panoramic borehole cameras.The findings highlight the innovative potential of the DPM method in identifying the zones of oil shale reservoir along the drill bit depth.The digital results provide a better understanding of the oil shale in Tongchuan and the potential for future oil shale exploration in other regions.
基金funded by National Natural Science Foundation of China(Grants Nos.41825018 and 42141009)the Second Tibetan Plateau Scientific Expedition and Research Program(Grants No.2019QZKK0904)。
文摘As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.
基金funded by the National Natural Science Foundation of China(42102309 and 42007243)the Natural Science Foundation of Liaoning Province(2023-MSBA-120)the National Key Research and Development Program(2022YFB3304705)。
文摘Clarify the mechanical properties of different laminations and the fracture mechanism of continental shale under in-situ stress can provide theoretical basis for more comprehensive evaluation of the fracability of continental shale oil reservoir.The Chang 72continental shale was used to investigate the mechanical properties of laminations and the effect of natural structure on the crack propagation of the shale.The XRD and thin section tests show that the laminations contain two types:bright sandy lamination with void structure and dark muddy lamination with layer structure.The real-time CT uniaxial compression tests were conducted to investigate the differences of mechanical properties between the muddy lamination and sandy lamination.It found that the uniaxial compression strength and elastic modulus of the sandy lamination are higher,forming a simple crack with large opening,and the Poisson's ratio of the muddy lamination is large,forming obvious lateral deformation and more secondary cracks.On this basis,the cuboid-shaped continental shale specimens were tested under true triaxial compression conditions to study the effect of laminations and interface cracks on crack propagation combining AE and CT techniques.It found that nascent cracks connected laminations and interface cracks to form fracture network under appropriate loading condition,tensile cracks developed in sandy lamination and shear cracks occurred in muddy lamination because of deformation dissonance and brittleness index differences,and more secondary cracks formed in muddy lamination with smaller fracture toughness.Moreover,the combination relationships between nascent and natural cracks mainly conclude direct penetration and deflection,which is affected by the filling degree and morphology of interface cracks and the relationship of lamination types.These conclusions show that laminar continental shale is conducive to forming complex fracture network,which can provide a theoretical basis for the proposal of indicators and methods for fracability evaluation.
基金the National Key R&D Program of China(2023YEE0119900)National Natural Science Foundation of China(Nos.92058211,42204105 and 42121005)+4 种基金Fundamental Research Funds for the Central Universities(No.862201013140)111 project(No.B20048)the International(Regional)Cooperation and Exchange Programs(No.12411530092)the Young Talent Fund of Association for Science and Technology in Shaanxi(No.20230703)Technology Innovation Leading Program of Shaanxi(No.2024 ZC-YYDP-27).
文摘Natural gas hydrates are crystalline solid complexes with different morphologies found in marine sediments and permafrost zones. The petrophysical properties of gas hydrate-bearing sediments(GHBS) are crucial for understanding the characteristics of gas hydrate reservoirs, the spatial distribution of natural gas hydrates, and their exploitation potential. Geophysical exploration remains the primary approach for investigating the petrophysical properties of GHBS. However, limitations in resolution make it challenging to accurately characterize complex sediment structures, leading to difficulties in precisely interpreting petrophysical properties. Laboratory-based petrophysical experiments provide highly accurate results for petrophysical properties. Despite their accuracy, these experiments are costly, and difficulties in controlling variables may introduce uncertainties into geophysical exploration models.Advances in imaging and simulation techniques have established digital rock technology as an indispensable tool for enhancing petrophysical experimentation. This technology offers a novel microscopic perspective for elucidating the three-dimensional(3D) spatial distribution and multi-physical responses of GHBS. This paper presents an in-depth discussion of digital rock technology as applied to GHBS, with an emphasis on digital rock reconstruction and simulation of petrophysical properties. First, we summarize two common methods for constructing digital rocks of GHBS: petrophysical experimental methods and numerical reconstruction methods, followed by analyses of their respective advantages and limitations. Next, we delve into numerical simulation methods for evaluating GHBS petrophysical properties, including electrical, elastic, and fluid flow characteristics. Finally, we conduct a comprehensive analysis of the current trends in digital rock reconstruction and petrophysical simulation techniques for GHBS, emphasizing the necessity of multi-scale, multi-component, high-resolution 3D digital rock models to facilitate the precise characterization of complex gas hydrate reservoirs. Future applications of microscopic digital rock technology should be integrated with macroscopic geophysical exploration to enable more comprehensive and precise analyses of GHBS petrophysical properties.
基金support in providing the data and the Universiti Teknologi Malaysia supported this work under UTM Flagship CoE/RG-Coe/RG 5.2:Evaluating Surface PGA with Global Ground Motion Site Response Analyses for the highest seismic activity location in Peninsular Malaysia(Q.J130000.5022.10G47)Universiti Teknologi Malaysia-Earthquake Hazard Assessment in Peninsular Malaysia Using Probabilistic Seismic Hazard Analysis(PSHA)Method(Q.J130000.21A2.06E9).
文摘The prediction of slope stability is a complex nonlinear problem.This paper proposes a new method based on the random forest(RF)algorithm to study the rocky slopes stability.Taking the Bukit Merah,Perak and Twin Peak(Kuala Lumpur)as the study area,the slope characteristics of geometrical parameters are obtained from a multidisciplinary approach(consisting of geological,geotechnical,and remote sensing analyses).18 factors,including rock strength,rock quality designation(RQD),joint spacing,continuity,openness,roughness,filling,weathering,water seepage,temperature,vegetation index,water index,and orientation,are selected to construct model input variables while the factor of safety(FOS)functions as an output.The area under the curve(AUC)value of the receiver operating characteristic(ROC)curve is obtained with precision and accuracy and used to analyse the predictive model ability.With a large training set and predicted parameters,an area under the ROC curve(the AUC)of 0.95 is achieved.A precision score of 0.88 is obtained,indicating that the model has a low false positive rate and correctly identifies a substantial number of true positives.The findings emphasise the importance of using a variety of terrain characteristics and different approaches to characterise the rock slope.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2024MD116)National Natural Science Foundation of China(Grant Nos.42174143,42004098)Technology Innovation Leading Program of Shaanxi(No.2024 ZC-YYDP-27).
文摘Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock properties.Given the multiscale characteristics of rock pore structures,direct three-dimensional imaging at sub-micrometer and nanometer scales is typically infeasible.This study introduces a method for reconstructing porous media using multidimensional data,which combines one-dimensional pore structure parameters with two-dimensional images to reconstruct three-dimensional models.The pore network model(PNM)is stochastically reconstructed using one-dimensional parameters,and a generative adversarial network(GAN)is utilized to equip the PNM with pore morphologies derived from two-dimensional images.The digital rocks generated by this method possess excellent controllability.Using Berea sandstone and Grosmont carbonate samples,we performed digital rock reconstructions based on PNM extracted by the maximum ball algorithm and compared them with stochastically reconstructed PNM.Pore structure parameters,permeability,and formation factors were calculated.The results show that the generated samples exhibit good consistency with real samples in terms of pore morphology,pore structure,and physical properties.Furthermore,our method effectively supplements the micropores not captured in CT images,demonstrating its potential in multiscale carbonate samples.Thus,the proposed reconstruction method is promising for advancing porous media property research.
基金The authors sincerely appreciate the valuable comments from the anonymous reviewers.The team of Jishunping from Wuhan University is acknowledged for supplying open-source remote sensing data.This research was supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0904)the National Natural Science Foundation of China(Grant No.U22A20597).
文摘Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid identification of landslides is important for disaster prevention and control;however,currently,landslide identification relies mainly on the manual interpretation of remote sensing images.Manual interpretation and feature recognition methods are time-consuming,labor-intensive,and challenging when confronted with complex scenarios.Consequently,automatic landslide recognition has emerged as a pivotal avenue for future development.In this study,a dataset comprising 2000 landslide images was constructed using open-source remote sensing images and datasets.The YOLOv7 model was enhanced using data augmentation algorithms and attention mechanisms.Three optimization models were formulated to realize automatic landslide recognition.The findings demonstrate the commendable performance of the optimized model in automatic landslide recognition,achieving a peak accuracy of 95.92%.Subsequently,the optimized model was applied to regional landslide identification,co-seismic landslide identification,and landslide recognition at various scales,all of which showed robust recognition capabilities.Nevertheless,the model exhibits limitations in detecting small targets,indicating areas for refining the deep-learning algorithms.The results of this research offer valuable technical support for the swift identification,prevention,and mitigation of landslide disasters.
基金supported by the Key Research Program of the Institute of Geology and Geophysics,CAS(Nos.IGGCAS-202102 and IGGCAS-201904)the National Natural Science Foundation of China(No.42230111)the CAS Key Technology Talent Program。
文摘After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.
基金supported by the National Center of Science,Poland under Sheng2 project No.UMO-2021/40/Q/ST8/00024:NonGauMech—New Methods of Processing Non-Stationary Signals (Identification,Segmentation,Extraction,Modeling)with Non-Gaussian Characteristics for the Purpose of Monitoring Complex Mechanical Structures.
文摘Sensors,vital elements in data acquisition systems,play a crucial role in various industries.However,their exposure to harsh operating conditions makes them vulnerable to faults that can compromise system performance.Early fault detection is therefore critical for minimizing downtime and ensuring system reliability.This paper delves into the contemporary landscape of fault diagnosis techniques for sensors,offering valuable insights for researchers and academicians.The papers begin by exploring the different types and causes of sensor faults,followed by a discussion of the various fault diagnosis methods employed in industrial sectors.The advantages and limitations of these methods are carefully examined,paving the way for highlighting current challenges and outlining potential future research directions.This comprehensive review aims to provide a thorough understanding of current advancements in sensor fault diagnosis,enabling readers to stay abreast of the latest developments in this rapidly evolving field.By addressing the challenges and exploring promising research avenues,this paper seeks to contribute to the development of more robust and effective sensor fault diagnosis methods,ultimately improving the reliability and safety of industrial and agricultural systems.
基金We acknowledge the funding support from the National Natural Science Foundation of China Youth Fund(Grant No.52004019)the National Natural Science Foundation of China(Grant No.41825018)China Postdoctoral Science Foundation(Grant No.2023M733481).
文摘Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41825018,41977248,42207219)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘The Sichuan-Xizang transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Xizang transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Xizang transportation corridor.
基金the National Natural Science Foundation of China(Nos.41825018,42141009)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0904).
文摘This study presents the classification and prediction of severity for brittle rock failure,focusing on failure behaviors and excessive determination based on damage depth.The research utilizes extensive field survey data from the Shuangjiangkou Hydropower Station and previous research findings.Based on field surveys and previous studies,four types of brittle rock failure with different failure mechanisms are classified,and then a prediction method is proposed.This method incorporates two variables,i.e.Kv(modified rock mass integrity coefficient)and GSI(geological strength index).The prediction method is applied to the first layer excavation of the powerhouse cavern of Shuangjiangkou Hydropower Station.The results show that the predicted brittle rock failure area agrees with the actual failure area,demonstrating the method’s applicability.Next,it extends to investigate brittle rock failure in two locations.The first is the k0-890 m section of the traffic cavern,and the second one is at K0-64 m of the main powerhouse.The criterion-based prediction indicates a severity brittle rock failure in the K0-890 m section,and a moderate brittle rock failure in the K0-64 m section,which agrees with the actual occurrence of brittle rock failure in the field.The understanding and application of the prediction method using Kv and GSI are vital for implementing a comprehensive brittle rock failure prediction process in geological engineering.To validate the adaptability of this criterion across diverse tunnel projects,a rigorous verification process using statistical findings was conducted.The assessment outcomes demonstrate high accuracy for various tunnel projects,allowing establishment of the correlations that enable valuable conclusions regarding brittle rock failure occurrence.Further validation and refinement through field and laboratory testing,as well as simulations,can broaden the contribution of this method to safer and more resilient underground construction.