用波形相关法精确地测定了在世界各地发生的87个6级以上地震的P波, PP波和Pdiff波的503个走时数据。记录这些地震波形的是新建于西太平洋地区的海洋半球地震观测网。我们利用这些高精度的走时数据研究了地幔体波的走时残差的范围及地幔...用波形相关法精确地测定了在世界各地发生的87个6级以上地震的P波, PP波和Pdiff波的503个走时数据。记录这些地震波形的是新建于西太平洋地区的海洋半球地震观测网。我们利用这些高精度的走时数据研究了地幔体波的走时残差的范围及地幔非均匀性的强度。结果表明,P波、PP波和Pdiff波的走时残差最大分别为9 s ,11 s和15 s ,这为地幔层析成像反演中应该使用的体波走时残差数据的范围提供了重要信息。超出这一范围的走时残差数据不应该用于反演中,以免歪曲成像结果。我们发现,当震中距小于40°时,P波走时残差的范围为-6到+9 s。而对于40°到99°之间的震中距,P波走时残差的范围为-3到+5s。由于震中距越大,P波穿透地幔越深,我们这一结果提供了直接和确凿的证据,表明上地幔和地幔转换带中的横向非均匀性的强度要远胜于下地幔。我们精确测量的Pdiff波的走时数据表明,在地幔底部存在显著的低速异常,可能与地幔热柱或者超级地幔柱有关。我们使用了一个最新的三维全球层析成像模型来解释这些体波走时数据的空间变化。展开更多
Technical developments for simple shear deformation experiments at high pressures were made. The newly designed cell assembly can be compressed by deformation-DIA apparatuses with the MA 6-6 system, which consists of ...Technical developments for simple shear deformation experiments at high pressures were made. The newly designed cell assembly can be compressed by deformation-DIA apparatuses with the MA 6-6 system, which consists of six second-stage tungsten carbide anvils (with a truncated edge length of 5 mm) and the anvil guide. Deformation of samples was barely observed during the compression process, showing that the shear strain of the deformed samples can be measured by the rotation of a strain marker. Simple shear deformation experiments on anhydrous and hydrous oli- vine aggregates were conducted under upper mantle conditions (pressures of 5.2-7.6 GPa and temperatures of 1 473-1 573 K), and sample deformation with a shear strain of 7=0.8-1.2 was successfully achieved at a shear strain rate of 4.0×10^-5-7.5×10^-5 s^-1. The present study extended the pressure range of simple shear deformation experiments in the deformation-DIA apparatus from 3 GPa in an early study to 7.6 GPa at high temperatures.展开更多
The fate of subducted carbonates in the lower mantle and at the core-mantle boundary was modelled via experiments in the MgCO3-Fe^0 system at 70-150 GPa and 800-2600 Kin a laser-heated diamond anvil cell.Using in situ...The fate of subducted carbonates in the lower mantle and at the core-mantle boundary was modelled via experiments in the MgCO3-Fe^0 system at 70-150 GPa and 800-2600 Kin a laser-heated diamond anvil cell.Using in situ synchrotro n X-ray diffraction and ex situ transmission electron microscopy we show that the reduction of Mg-carbonate can be exemplified by:6 MgCO3+19 Fe=8 FeO+10(Mg0.6Fe^0.4)O+Fe7 C3+3 C.The presented results suggest that the interaction of carbonates with Fe^0 or Fe^0-bearing rocks can produce Fe-carbide and diamond,which can accumulate in the D"region,depending on its carbon to Fe ratio.Due to the sluggish kinetics of the transformation,diamond can remain metastable at the core-mantle boundary(CMB)unless it is in a direct contact with Fe-metal.In addition,it can be remobilized by redox melting accompanying the generation of mantle plumes.展开更多
Simultaneous ultrasonic elastic wave velocity and in situ synchrotron X-ray measurements on grossular garnet were carried out up to 17 GPa and 1 650 K. P- and S-wave vdoeities and bulk and shear modulus showed linear ...Simultaneous ultrasonic elastic wave velocity and in situ synchrotron X-ray measurements on grossular garnet were carried out up to 17 GPa and 1 650 K. P- and S-wave vdoeities and bulk and shear modulus showed linear pressure and temperature dependence. These data yielded a pressure derivative of the bulk modulus of 4.42(7) and a shear modulus of 1.27(3), which are in good agreement with those of garnets with variable chemical compositions. Temperature dependence of the bulk modulus of grossular (-1.36×10^-2 GPafK) is also similar to that of other garnets, while the temperature dependence of the shear modulus of grossular (-1.11×10^-2 GPa/K) is higher than those of magnesium end-member garnets and pyrolitic garnet.展开更多
A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of a...A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of an infinitesimal perturbation superimposed to a static (motionless) and con- ductive state in a basally-heated planar layer. From the changes in flow patterns with increasing the amplitudes of temperature dependence of viscosity, we identified the transition into the "stagnant-lid" (ST) regime, where the convection occurs only beneath a thick and stagnant-lid of cold fluid at the top surface. Detailed analysis showed a significant increase of the aspect ratio of convection cells in ST regime induced by the spatial variations in thermal conductivity and/or expansivity: the horizon- tal length scale of ST convection can be enlarged by up to 50% with 10 times increase of thermal conductivity with depth. We further developed an analytical model of ST convection which success- fully reproduced the mechanism of increasing horizontal length scale of ST regime convection cells for given spatial variations in physical properties. Our findings may highlight the essential roles of the spatial variation of thermal conductivity on the convection patterns in the mantle.展开更多
A deformation experiment of ringwoodite with a strain of 9% was achieved at 20 GPa and 1 700 K and at a strain rate of 3×10^-5 s^-1 using a deformation-DIA (D-DIA) apparatus and a multi-anvil 6-6 (MA 6-6) ass...A deformation experiment of ringwoodite with a strain of 9% was achieved at 20 GPa and 1 700 K and at a strain rate of 3×10^-5 s^-1 using a deformation-DIA (D-DIA) apparatus and a multi-anvil 6-6 (MA 6-6) assembly. The crystallographic orientations of the deformed sample were successfully analyzed by the electron backscatter diffraction (EBSD) method, although any notable latticepreferred orientation (LPO) was not observed presumably due to the insufficient strain in the present experiment. In this study, the deformation experiment on ringwoodite succeeded at P-T conditions consistent with the lower part of the mantle transition zone and at a controlled strain rate for the first time. The present study extended the pressure range of deformation experiments in the D-DIA apparatus from 16 GPa in our earlier study to 20 GPa at 1 700 K. The successful extension of the pressure range demonstrates potential importance of the D-DIA apparatus in studying rheological properties of minerals under the P-T conditions of the whole mantle transition zone.展开更多
In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional me...In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.展开更多
Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20-160 GPa and temperatures of 2 500-6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperatu...Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20-160 GPa and temperatures of 2 500-6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperature (Tin) of 5 900 K at 135 GPa. This is 1 100 K higher than the temperature considered for the core-mantle boundary (CMB) of about 3 800 K. The calculated melting temperature is fairly consistent with classical MD (molecular dynamics) simulations. For liquid silica, the O-O coordination number is found to be 12 along the Tm and is almost unchanged with increasing pressure. The self-diffusion coefficients of O and Si atoms are determined to be 1.3×10^-9-3.3×10^-9 m2/s, and the viscosity is 0.02-0.03 Pa's along the Tin. We find that these transport properties depend less on pressure in the wide range up of more than 135 GPa. The eutectic temperatures in the MgO-SiO2 systems were evaluated and found to be 700 K higher than the CMB temperature, though they would decrease considerably in more realistic mantle compositions.展开更多
The first-order Raman spectroscopy of diamond exhibits splitting and redshift after the burst of high-pressure(160–200 GPa) and high-temperature(~2000 K). The observed longitudinal optical(LO) and the transverse opt...The first-order Raman spectroscopy of diamond exhibits splitting and redshift after the burst of high-pressure(160–200 GPa) and high-temperature(~2000 K). The observed longitudinal optical(LO) and the transverse optical(TO) splitting of Raman phonon is related to the tensile-strain induced activation of the forbidden or silent Raman modes that arise in the proximity of the Brillouin zone center.展开更多
Geological observations indicate that there are only a few rocks of Archean Earth and no Hadean rocks on the surface of the present-day Earth.From these facts,many scientists believe that the primordial continents nev...Geological observations indicate that there are only a few rocks of Archean Earth and no Hadean rocks on the surface of the present-day Earth.From these facts,many scientists believe that the primordial continents never existed during Hadean Earth,and the continental volume has kept increasing.On the other hand,recent studies reported the importance of the primordial continents on the origin of life,implying their existence.In this paper,we discussed the possible process that could explain the loss of the primordial continents with the assumption that they existed in the Hadean.Although depending on the timing of the initiation of plate tectonics and its convection style,subduction erosion,which is observed on the present-day Earth,might have carried the primordial continents into the deep mantle.展开更多
We use 146 422 P-wave arrival times from 6 347 local earthquakes recorded by the Southern California SeismicNetwork to determine a detailed three-dimensional P-wave velocity structure at 0~35 km depth. We have takeni...We use 146 422 P-wave arrival times from 6 347 local earthquakes recorded by the Southern California SeismicNetwork to determine a detailed three-dimensional P-wave velocity structure at 0~35 km depth. We have takeninto account the Moho depth variations, which were obtained by seismological methods. Checkerboard tests sug-gest that our inversion results are reliable. Our models provide new information on regional geological structuresof Southern California. At shallow depths P-wave velocity structure correlates with surface geological features andexpresses well variations of surface topography of the mountains and basins. The velocity structure at each layer ischaracterized by block structures bounded by large faults. Ventura Basin, Los Angeles Basin, Mojave Desert, Pen-insular Ranges, San Joaquin Valley, Sierra Nevada, and Salton Trough show respectively all-round block. SanAndreas Fault becomes an obvious boundary of the region. To its southwest, the velocity is higher, and there arestrong heterogeneity and deeper seismicity; but to its northeast, the velocity is lower and shows less variation thanto the southwest, the seismicity is shallower. To investigate the effect of the Moho geometry we conducted inver-sions for two cases: one for flat Moho geometry, another for a Moho with lateral depth variations. We found thatthe topography of the Moho greatly affects the velocity structure of the middle and lower crust. When the Mohotopography is considered, a more reasonable tomographic result can be obtained and the resulting 3-D velocitymodel fits the data better.展开更多
The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's s...The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface,suggesting the Hadean crust was lost due to some processes.We investigated the subduction of one of the possible candidates for the primordial crust,anorthosite and KREEP crust similar to the Moon,which is also considered to have formed from the crystallization of the magma ocean.Similar to the present Earth,the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface.In this study,the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations.The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion.We have found that primordial anorthosite and KREEP crust of up to - 50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.展开更多
Controlled disordering of substitutional and interstitial site occupation at high pressure can lead to important changes in the structural and physical properties of iron–nickel nitrides.Despite important progress th...Controlled disordering of substitutional and interstitial site occupation at high pressure can lead to important changes in the structural and physical properties of iron–nickel nitrides.Despite important progress that has been achieved,structural characterization of ternary Fe–Ni–N compounds remains an open problem owing to the considerable technical challenges faced by current synthetic and structural approaches for fabrication of bulk ternary nitrides.Here,iron–nickel nitride samples are synthesized as spherical-like bulk materials through a novel highpressure solid-state metathesis reaction.By employing a wide array of techniques,namely,neutron powder diffraction,Rietveld refinement methods combined with synchrotron radiation angle-dispersive x-ray diffraction,scanning electron microscopy/energy dispersive x-ray spectroscopy,and transmission electron microscopy,we demonstrate that high-temperature and high-pressure confinement conditions favor substitutional and interstitial site disordering in ternary iron–nickel nitrides.In addition,the effects of interstitial nitrogen atoms and disorderly substituted nickel atoms on the elastic properties of the materials are discussed.展开更多
It has been thought that granitic crust, having been formed on the surface, must have survived through the Earth's evolution because of its buoyancy. At subduction zones continental crust is predominantly created by ...It has been thought that granitic crust, having been formed on the surface, must have survived through the Earth's evolution because of its buoyancy. At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction, subduction erosion, and continental subduction. Granitic rocks, the major constituent of the continental crust, are lighter than the mantle at depths shallower than 270 km, but we show here, based on first principles calcu- lations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone, and thus can be subducted in the depth range of 270-660 km. This suggests that there can be two reservoirs of granitic material in the Earth, one on the surface and the other at the base of the mantle transition zone (MTZ). The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust. Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle. This could explain the anomalous seismic-wave velocities observed around 660 km depth. The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation, chemical discontinuities between granitic material and the surrounding mantle, or a combination thereof.展开更多
文摘用波形相关法精确地测定了在世界各地发生的87个6级以上地震的P波, PP波和Pdiff波的503个走时数据。记录这些地震波形的是新建于西太平洋地区的海洋半球地震观测网。我们利用这些高精度的走时数据研究了地幔体波的走时残差的范围及地幔非均匀性的强度。结果表明,P波、PP波和Pdiff波的走时残差最大分别为9 s ,11 s和15 s ,这为地幔层析成像反演中应该使用的体波走时残差数据的范围提供了重要信息。超出这一范围的走时残差数据不应该用于反演中,以免歪曲成像结果。我们发现,当震中距小于40°时,P波走时残差的范围为-6到+9 s。而对于40°到99°之间的震中距,P波走时残差的范围为-3到+5s。由于震中距越大,P波穿透地幔越深,我们这一结果提供了直接和确凿的证据,表明上地幔和地幔转换带中的横向非均匀性的强度要远胜于下地幔。我们精确测量的Pdiff波的走时数据表明,在地幔底部存在显著的低速异常,可能与地幔热柱或者超级地幔柱有关。我们使用了一个最新的三维全球层析成像模型来解释这些体波走时数据的空间变化。
基金supported by the Global COE Program of Ehime University "Deep Earth Mineralogy"
文摘Technical developments for simple shear deformation experiments at high pressures were made. The newly designed cell assembly can be compressed by deformation-DIA apparatuses with the MA 6-6 system, which consists of six second-stage tungsten carbide anvils (with a truncated edge length of 5 mm) and the anvil guide. Deformation of samples was barely observed during the compression process, showing that the shear strain of the deformed samples can be measured by the rotation of a strain marker. Simple shear deformation experiments on anhydrous and hydrous oli- vine aggregates were conducted under upper mantle conditions (pressures of 5.2-7.6 GPa and temperatures of 1 473-1 573 K), and sample deformation with a shear strain of 7=0.8-1.2 was successfully achieved at a shear strain rate of 4.0×10^-5-7.5×10^-5 s^-1. The present study extended the pressure range of simple shear deformation experiments in the deformation-DIA apparatus from 3 GPa in an early study to 7.6 GPa at high temperatures.
基金supported byRussian Science Foundation,project No 17-17-01177.AGsupport of the Deep Carbon Observatory through the Alfred P.Sloan Foundation
文摘The fate of subducted carbonates in the lower mantle and at the core-mantle boundary was modelled via experiments in the MgCO3-Fe^0 system at 70-150 GPa and 800-2600 Kin a laser-heated diamond anvil cell.Using in situ synchrotro n X-ray diffraction and ex situ transmission electron microscopy we show that the reduction of Mg-carbonate can be exemplified by:6 MgCO3+19 Fe=8 FeO+10(Mg0.6Fe^0.4)O+Fe7 C3+3 C.The presented results suggest that the interaction of carbonates with Fe^0 or Fe^0-bearing rocks can produce Fe-carbide and diamond,which can accumulate in the D"region,depending on its carbon to Fe ratio.Due to the sluggish kinetics of the transformation,diamond can remain metastable at the core-mantle boundary(CMB)unless it is in a direct contact with Fe-metal.In addition,it can be remobilized by redox melting accompanying the generation of mantle plumes.
基金supported by the research proposal to SPring-8 by Y Kono (No. 2007B1648)the Grant-in-Aid for Scientific Research from the Japanese Government to T Irifune
文摘Simultaneous ultrasonic elastic wave velocity and in situ synchrotron X-ray measurements on grossular garnet were carried out up to 17 GPa and 1 650 K. P- and S-wave vdoeities and bulk and shear modulus showed linear pressure and temperature dependence. These data yielded a pressure derivative of the bulk modulus of 4.42(7) and a shear modulus of 1.27(3), which are in good agreement with those of garnets with variable chemical compositions. Temperature dependence of the bulk modulus of grossular (-1.36×10^-2 GPafK) is also similar to that of other garnets, while the temperature dependence of the shear modulus of grossular (-1.11×10^-2 GPa/K) is higher than those of magnesium end-member garnets and pyrolitic garnet.
基金acknowledge thorough support from the Global COE program from the Ministry of Education, Culture, Sports and Technology (MEXT) of Japan
文摘A series of linear stability analysis is carried out on the onset of thermal convection in the presence of spatial variations of viscosity, thermal conductivity and expansivity. We consider the temporal evolution of an infinitesimal perturbation superimposed to a static (motionless) and con- ductive state in a basally-heated planar layer. From the changes in flow patterns with increasing the amplitudes of temperature dependence of viscosity, we identified the transition into the "stagnant-lid" (ST) regime, where the convection occurs only beneath a thick and stagnant-lid of cold fluid at the top surface. Detailed analysis showed a significant increase of the aspect ratio of convection cells in ST regime induced by the spatial variations in thermal conductivity and/or expansivity: the horizon- tal length scale of ST convection can be enlarged by up to 50% with 10 times increase of thermal conductivity with depth. We further developed an analytical model of ST convection which success- fully reproduced the mechanism of increasing horizontal length scale of ST regime convection cells for given spatial variations in physical properties. Our findings may highlight the essential roles of the spatial variation of thermal conductivity on the convection patterns in the mantle.
基金supported by the Global Center of Excellence Program "Deep Earth Mineralogy" the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government
文摘A deformation experiment of ringwoodite with a strain of 9% was achieved at 20 GPa and 1 700 K and at a strain rate of 3×10^-5 s^-1 using a deformation-DIA (D-DIA) apparatus and a multi-anvil 6-6 (MA 6-6) assembly. The crystallographic orientations of the deformed sample were successfully analyzed by the electron backscatter diffraction (EBSD) method, although any notable latticepreferred orientation (LPO) was not observed presumably due to the insufficient strain in the present experiment. In this study, the deformation experiment on ringwoodite succeeded at P-T conditions consistent with the lower part of the mantle transition zone and at a controlled strain rate for the first time. The present study extended the pressure range of deformation experiments in the D-DIA apparatus from 16 GPa in our earlier study to 20 GPa at 1 700 K. The successful extension of the pressure range demonstrates potential importance of the D-DIA apparatus in studying rheological properties of minerals under the P-T conditions of the whole mantle transition zone.
基金funding support from Grant-in-Aid for Scientific Research(Grant No.19H00722)by Japan Society for the Promotion of Science(JSPS)。
文摘In this paper, a template matching and location method, which has been rapidly adopted in microseismic research in recent years, is applied to laboratory acoustic emission(AE) monitoring. First, we used traditional methods to detect P-wave first motions and locate AE hypocenters in three dimensions. In addition, we selected events located with sufficient accuracy(normally corresponding AE events of relatively larger energy, showing clear P-wave first motion and a higher signal-to-noise ratio in most channels) as template events. Then, the template events were used to scan and match other poorly located events in triggered event records or weak events in continuous records. Through crosscorrelation of the multi-channel waveforms between the template and the event to be detected, the weak signal was detected and located using a grid-searching algorithm(with the grid centered at the template hypocenter). In order to examine the performance of the approach, we calibrated the proposed method using experimental data of different rocks and different types of experiments. The results show that the proposed method can significantly improve the detection capability and location accuracy, and can be applied to various laboratory and in situ experiments, which use multi-channel AE monitoring with waveforms recorded in either triggering or continuous mode.
基金supported by the Japan Society for the Promo-tion of Science (No. 21740330) to Yusuke Usui, (No. 19740331) to Taku Tsuchiya, a fellowship from the Global-COE program "Deep Earth Mineralogy" to Yusuke Usui
文摘Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20-160 GPa and temperatures of 2 500-6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperature (Tin) of 5 900 K at 135 GPa. This is 1 100 K higher than the temperature considered for the core-mantle boundary (CMB) of about 3 800 K. The calculated melting temperature is fairly consistent with classical MD (molecular dynamics) simulations. For liquid silica, the O-O coordination number is found to be 12 along the Tm and is almost unchanged with increasing pressure. The self-diffusion coefficients of O and Si atoms are determined to be 1.3×10^-9-3.3×10^-9 m2/s, and the viscosity is 0.02-0.03 Pa's along the Tin. We find that these transport properties depend less on pressure in the wide range up of more than 135 GPa. The eutectic temperatures in the MgO-SiO2 systems were evaluated and found to be 700 K higher than the CMB temperature, though they would decrease considerably in more realistic mantle compositions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774247)
文摘The first-order Raman spectroscopy of diamond exhibits splitting and redshift after the burst of high-pressure(160–200 GPa) and high-temperature(~2000 K). The observed longitudinal optical(LO) and the transverse optical(TO) splitting of Raman phonon is related to the tensile-strain induced activation of the forbidden or silent Raman modes that arise in the proximity of the Brillouin zone center.
基金supported by JSPS KAKENHI(Grand-in-Aid for Scientific Research(S)) Grant No.23224012(Growth of the second continent and mantle)
文摘Geological observations indicate that there are only a few rocks of Archean Earth and no Hadean rocks on the surface of the present-day Earth.From these facts,many scientists believe that the primordial continents never existed during Hadean Earth,and the continental volume has kept increasing.On the other hand,recent studies reported the importance of the primordial continents on the origin of life,implying their existence.In this paper,we discussed the possible process that could explain the loss of the primordial continents with the assumption that they existed in the Hadean.Although depending on the timing of the initiation of plate tectonics and its convection style,subduction erosion,which is observed on the present-day Earth,might have carried the primordial continents into the deep mantle.
基金Japan Society for Promotion of Science,Chinese State Key Program of Basic Research on Mechanisms and Predictions of Strong Continental Earthquakes
文摘We use 146 422 P-wave arrival times from 6 347 local earthquakes recorded by the Southern California SeismicNetwork to determine a detailed three-dimensional P-wave velocity structure at 0~35 km depth. We have takeninto account the Moho depth variations, which were obtained by seismological methods. Checkerboard tests sug-gest that our inversion results are reliable. Our models provide new information on regional geological structuresof Southern California. At shallow depths P-wave velocity structure correlates with surface geological features andexpresses well variations of surface topography of the mountains and basins. The velocity structure at each layer ischaracterized by block structures bounded by large faults. Ventura Basin, Los Angeles Basin, Mojave Desert, Pen-insular Ranges, San Joaquin Valley, Sierra Nevada, and Salton Trough show respectively all-round block. SanAndreas Fault becomes an obvious boundary of the region. To its southwest, the velocity is higher, and there arestrong heterogeneity and deeper seismicity; but to its northeast, the velocity is lower and shows less variation thanto the southwest, the seismicity is shallower. To investigate the effect of the Moho geometry we conducted inver-sions for two cases: one for flat Moho geometry, another for a Moho with lateral depth variations. We found thatthe topography of the Moho greatly affects the velocity structure of the middle and lower crust. When the Mohotopography is considered, a more reasonable tomographic result can be obtained and the resulting 3-D velocitymodel fits the data better.
基金supported partly by KAKENHI 26800237 and 26287105
文摘The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean.However,geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface,suggesting the Hadean crust was lost due to some processes.We investigated the subduction of one of the possible candidates for the primordial crust,anorthosite and KREEP crust similar to the Moon,which is also considered to have formed from the crystallization of the magma ocean.Similar to the present Earth,the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface.In this study,the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations.The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion.We have found that primordial anorthosite and KREEP crust of up to - 50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.
基金support by the National Natural Science Foundation of China(Grant Nos.U2030107 and 11774247)the Joint Usage/Research Center PRIUS,Ehime University,Japan.
文摘Controlled disordering of substitutional and interstitial site occupation at high pressure can lead to important changes in the structural and physical properties of iron–nickel nitrides.Despite important progress that has been achieved,structural characterization of ternary Fe–Ni–N compounds remains an open problem owing to the considerable technical challenges faced by current synthetic and structural approaches for fabrication of bulk ternary nitrides.Here,iron–nickel nitride samples are synthesized as spherical-like bulk materials through a novel highpressure solid-state metathesis reaction.By employing a wide array of techniques,namely,neutron powder diffraction,Rietveld refinement methods combined with synchrotron radiation angle-dispersive x-ray diffraction,scanning electron microscopy/energy dispersive x-ray spectroscopy,and transmission electron microscopy,we demonstrate that high-temperature and high-pressure confinement conditions favor substitutional and interstitial site disordering in ternary iron–nickel nitrides.In addition,the effects of interstitial nitrogen atoms and disorderly substituted nickel atoms on the elastic properties of the materials are discussed.
基金the support of a JSPS Fellowship for Young Scientists to K.K.the Grant-in-Aid for Scientific Research from JSPS(Grant No.20001005) to T.T and the Grant-in-Aid for Scientific Research from JSPS(Grant No. 20244083) to S.M
文摘It has been thought that granitic crust, having been formed on the surface, must have survived through the Earth's evolution because of its buoyancy. At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction, subduction erosion, and continental subduction. Granitic rocks, the major constituent of the continental crust, are lighter than the mantle at depths shallower than 270 km, but we show here, based on first principles calcu- lations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone, and thus can be subducted in the depth range of 270-660 km. This suggests that there can be two reservoirs of granitic material in the Earth, one on the surface and the other at the base of the mantle transition zone (MTZ). The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust. Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle. This could explain the anomalous seismic-wave velocities observed around 660 km depth. The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation, chemical discontinuities between granitic material and the surrounding mantle, or a combination thereof.