GNSS站坐标时间序列中的季节性信号常用固定振幅与相位的谐波函数建模,但实际上季节性信号的振幅和相位是时变的,具有调制性.为了准确提取季节性形变,本文提出了GNSS基准站调制季节性信号的均方根信息滤波(square root information filt...GNSS站坐标时间序列中的季节性信号常用固定振幅与相位的谐波函数建模,但实际上季节性信号的振幅和相位是时变的,具有调制性.为了准确提取季节性形变,本文提出了GNSS基准站调制季节性信号的均方根信息滤波(square root information filter, SRIF)估计方法.以GNSS基准站高程方向的坐标时间序列为研究对象,通过调整季节性信号的过程噪声标准差,实现了调制季节性信号估计;通过分析对比SRIF与Hector软件按不同方式对季节性信号建模得到的残差序列频谱图,确定了SRIF周年信号过程噪声标准差的经验值为0.01 mm;同时统计了两种季节性信号建模方式下估计的线性速度,发现高程方向上速度估值差异最大可达0.34 mm/a,说明估计调制季节性信号对准确提取线性速度,对建立更高精度的地球参考框架具有重要意义.展开更多
The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the p...The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China.展开更多
Global Navigation Satellite System(GNSS)imaging method(GIM)has been successfully applied to global regions to investigate vertical land motion(VLM)of the Earth's surface.GNSS images derived from conventional GIM m...Global Navigation Satellite System(GNSS)imaging method(GIM)has been successfully applied to global regions to investigate vertical land motion(VLM)of the Earth's surface.GNSS images derived from conventional GIM method may present fragmented patches and encounter problems caused by excessive smoothing of velocity peaks,leading to difficulty in short-wavelength deformation detection and improper geophysical interpretation.Therefore,we propose a novel GNSS imaging method based on Gaussian process regression with velocity uncertainty considered(GPR-VU).Gaussian processing regression is introduced to describe the spatial relationship between neighboring site pairs as a priori weights and then reweight velocities by known station uncertainties,converting the discrete velocity field to a continuous one.The GPR-VU method is applied to reconstruct VLM images in the southwestern United States and the eastern Qinghai-Xizang Plateau,China,using the GNSS position time series in vertical direction.Compared to the traditional GIM method,the root-mean-square(RMS)and overall accuracy of the confusion matrix of the GPR-VU method increase by 5.0%and 14.0%from the 1°×1°checkerboard test in the southwestern United States.Similarly,the RMS and overall accuracy increase by 33.7%and 15.8%from the 6°×6°checkerboard test in the eastern Qinghai-Xizang Plateau.These checkerboard tests validate the capability to effectively capture the spatiotemporal variations characteristics of VLM and show that this algorithm outperforms the sparsely distributed network in the Qinghai-Xizang Plateau.The images from the GPR-VU method using real data in both regions show significant subsidence around Lassen Volcanic in northern California within a 30 km radius,slight uplift in the northern Sichuan Basin,and subsidence in its central and southern sections.These results further qualitatively illustrate consistency with previous findings.The GPR-VU method outperforms in diminishing the effect by fragmented patches,excessive smoothing of velocity peaks,and detecting potential short-wavelength deformations.展开更多
GNSS time series analysis provides an effective method for research on the earth's surface deformation,and it can be divided into two parts,deterministic models and stochastic models.The former part can be achieve...GNSS time series analysis provides an effective method for research on the earth's surface deformation,and it can be divided into two parts,deterministic models and stochastic models.The former part can be achieved by several parameters,such as polynomial terms,periodic terms,offsets,and post-seismic models.The latter contains some stochastic noises,which can be affected by detecting the former parameters.If there are not enough parameters assumed,modeling errors will occur and adversely affect the analysis results.In this study,we propose a processing strategy in which the commonly-used 1-order of the polynomial term can be replaced with different orders for better fitting GNSS time series of the Crustal Movement Network of China(CMONOC)stations.Initially,we use the Bayesian Information Criterion(BIC)to identify the best order within the range of 1-4 during the fitting process using the white noise plus power-law noise(WN+PL)model.Then,we compare the 1-order and the optimal order on the effect of deterministic models in GNSS time series,including the velocity and its uncertainty,amplitudes,and initial phases of the annual signals.The results indicate that the first-order polynomial in the GNSS time series is not the primary factor.The root mean square(RMS)reduction rates of almost all station components are positive,which means the new fitting of optimal-order polynomial helps to reduce the RMS of residual series.Most stations maintain the velocity difference(VD)within ±1 mm/yr,with percentages of 85.6%,81.9%and 63.4%in the North,East,and Up components,respectively.As for annual signals,the numbers of amplitude difference(AD)remained at ±0.2 mm are 242,239,and 200 in three components,accounting for 99.6%,98.4%,and 82.3%,respectively.This finding reminds us that the detection of the optimal-order polynomial is necessary when we aim to acquire an accurate understanding of the crustal movement features.展开更多
Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigat...Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigation satellite systems(GNSSs)have been a valuable tool in monitoring seismic motions,allowing permanent displacement computation to be unambiguously achieved.As a valuable tool presented to the seismic commu nity,the GSeisRT software developed by Wuhan University(China)can realize multi-GNSS precise point positioning with ambiguity resolution(PPP-AR)and achieve centimeterlevel to sub-centimeter-level precision in real time.While the stable maintenance of a global precise point positioning(PPP)service is challenging,this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network.This capability makes GSeisRT especially suitable for proprietary GNSS networks and,more importantly,the highest possible positio ning precision and reliability can be obtained.According to real-time results from the Network of the Americas,the mean root mean square(RMS)errors of kinematic PPP-AR over a 24 h span are as low as 1.2,1.3,and 3.0 cm in the east,north,and up components,respectively.Within the few minutes that span a typical seismic event,a horizontal displacement precision of 4 mm can be achieved.The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%-40%higher than that of the global PPP/PPP-AR.Since 2019,GSeisRT has successfully recorded the static,dynamic,and peak ground displacements for the 2020Oaxaca,Mexico moment magnitude(Mw)7.4 event;the 2020 Lone Pine,California Mw 5.8 event;and the 2021 Qinghai,China Mw 7.3 event in real time.The resulting immediate magnitude estimates have an error of around 0.1 only.The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Ne tworks Center,the EarthScope Consortium of the United States,the National Seismological Center of Chile,Institute of Geological and Nuclear Sciences Limited(GNS Science Te PūAo)of New Zealand,and the Geospatial Information Agency of Indonesia.展开更多
基金co-supported by the National Nature Science Foundation of China(No.12303071)the Shanghai Science and Technology Plan Project,China(No.23YF1455500)+1 种基金the China Postdoctoral Science Foundation(No.2023M743653)Ministry of Industry and Information Technology of China through the High Precision Timing Service Project(No.TC220A04A-80)。
文摘The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China.
基金supported by the National Natural Science Foundation of China(Grant No.42274035)the Major Science and Technology Program for Hubei Province(No.2022AAA002)the Hunan Provincial Land Surveying and Mapping Project(HNGTCH-2023-05)。
文摘Global Navigation Satellite System(GNSS)imaging method(GIM)has been successfully applied to global regions to investigate vertical land motion(VLM)of the Earth's surface.GNSS images derived from conventional GIM method may present fragmented patches and encounter problems caused by excessive smoothing of velocity peaks,leading to difficulty in short-wavelength deformation detection and improper geophysical interpretation.Therefore,we propose a novel GNSS imaging method based on Gaussian process regression with velocity uncertainty considered(GPR-VU).Gaussian processing regression is introduced to describe the spatial relationship between neighboring site pairs as a priori weights and then reweight velocities by known station uncertainties,converting the discrete velocity field to a continuous one.The GPR-VU method is applied to reconstruct VLM images in the southwestern United States and the eastern Qinghai-Xizang Plateau,China,using the GNSS position time series in vertical direction.Compared to the traditional GIM method,the root-mean-square(RMS)and overall accuracy of the confusion matrix of the GPR-VU method increase by 5.0%and 14.0%from the 1°×1°checkerboard test in the southwestern United States.Similarly,the RMS and overall accuracy increase by 33.7%and 15.8%from the 6°×6°checkerboard test in the eastern Qinghai-Xizang Plateau.These checkerboard tests validate the capability to effectively capture the spatiotemporal variations characteristics of VLM and show that this algorithm outperforms the sparsely distributed network in the Qinghai-Xizang Plateau.The images from the GPR-VU method using real data in both regions show significant subsidence around Lassen Volcanic in northern California within a 30 km radius,slight uplift in the northern Sichuan Basin,and subsidence in its central and southern sections.These results further qualitatively illustrate consistency with previous findings.The GPR-VU method outperforms in diminishing the effect by fragmented patches,excessive smoothing of velocity peaks,and detecting potential short-wavelength deformations.
基金supported by the National Natural Science Foundation of China(Grant Nos.42404017,42122025 and 42174030).
文摘GNSS time series analysis provides an effective method for research on the earth's surface deformation,and it can be divided into two parts,deterministic models and stochastic models.The former part can be achieved by several parameters,such as polynomial terms,periodic terms,offsets,and post-seismic models.The latter contains some stochastic noises,which can be affected by detecting the former parameters.If there are not enough parameters assumed,modeling errors will occur and adversely affect the analysis results.In this study,we propose a processing strategy in which the commonly-used 1-order of the polynomial term can be replaced with different orders for better fitting GNSS time series of the Crustal Movement Network of China(CMONOC)stations.Initially,we use the Bayesian Information Criterion(BIC)to identify the best order within the range of 1-4 during the fitting process using the white noise plus power-law noise(WN+PL)model.Then,we compare the 1-order and the optimal order on the effect of deterministic models in GNSS time series,including the velocity and its uncertainty,amplitudes,and initial phases of the annual signals.The results indicate that the first-order polynomial in the GNSS time series is not the primary factor.The root mean square(RMS)reduction rates of almost all station components are positive,which means the new fitting of optimal-order polynomial helps to reduce the RMS of residual series.Most stations maintain the velocity difference(VD)within ±1 mm/yr,with percentages of 85.6%,81.9%and 63.4%in the North,East,and Up components,respectively.As for annual signals,the numbers of amplitude difference(AD)remained at ±0.2 mm are 242,239,and 200 in three components,accounting for 99.6%,98.4%,and 82.3%,respectively.This finding reminds us that the detection of the optimal-order polynomial is necessary when we aim to acquire an accurate understanding of the crustal movement features.
基金funded by National Science Foundation of China(42025401)National Key Research and Development Program of China(2022YFB3903800)。
文摘Precise coseismic displacements in earthquake/tsunamic early warning are necessary to characterize earthquakes in real time in order to enable decision-makers to issue alerts for public safety.Real-time global navigation satellite systems(GNSSs)have been a valuable tool in monitoring seismic motions,allowing permanent displacement computation to be unambiguously achieved.As a valuable tool presented to the seismic commu nity,the GSeisRT software developed by Wuhan University(China)can realize multi-GNSS precise point positioning with ambiguity resolution(PPP-AR)and achieve centimeterlevel to sub-centimeter-level precision in real time.While the stable maintenance of a global precise point positioning(PPP)service is challenging,this software is capable of estimating satellite clocks and phase biases in real time using a regional GNSS network.This capability makes GSeisRT especially suitable for proprietary GNSS networks and,more importantly,the highest possible positio ning precision and reliability can be obtained.According to real-time results from the Network of the Americas,the mean root mean square(RMS)errors of kinematic PPP-AR over a 24 h span are as low as 1.2,1.3,and 3.0 cm in the east,north,and up components,respectively.Within the few minutes that span a typical seismic event,a horizontal displacement precision of 4 mm can be achieved.The positioning precision of the GSeisRT regional PPP/PPP-AR is 30%-40%higher than that of the global PPP/PPP-AR.Since 2019,GSeisRT has successfully recorded the static,dynamic,and peak ground displacements for the 2020Oaxaca,Mexico moment magnitude(Mw)7.4 event;the 2020 Lone Pine,California Mw 5.8 event;and the 2021 Qinghai,China Mw 7.3 event in real time.The resulting immediate magnitude estimates have an error of around 0.1 only.The GSeisRT software is open to the scientific community and has been applied by the China Earthquake Ne tworks Center,the EarthScope Consortium of the United States,the National Seismological Center of Chile,Institute of Geological and Nuclear Sciences Limited(GNS Science Te PūAo)of New Zealand,and the Geospatial Information Agency of Indonesia.