期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Receding-Horizon Trajectory Planning for Under-Actuated Autonomous Vehicles Based on Collaborative Neurodynamic Optimization 被引量:5
1
作者 Jiasen Wang Jun Wang Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1909-1923,共15页
This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequentia... This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations.The feasibility of the formulated optimization problem is guaranteed under derived conditions.The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure.Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method. 展开更多
关键词 Collaborative neurodynamic optimization receding-horizon planning trajectory planning under-actuated vehicles
在线阅读 下载PDF
SBFT:A BFT Consensus Mechanism Based on DQN Algorithm for Industrial Internet of Thing
2
作者 Ningjie Gao Ru Huo +3 位作者 Shuo Wang Jiang Liu Tao Huang Yunjie Liu 《China Communications》 SCIE CSCD 2023年第10期185-199,共15页
With the development and widespread use of blockchain in recent years,many projects have introduced blockchain technology to solve the growing security issues of the Industrial Internet of Things(IIoT).However,due to ... With the development and widespread use of blockchain in recent years,many projects have introduced blockchain technology to solve the growing security issues of the Industrial Internet of Things(IIoT).However,due to the conflict between the operational performance and security of the blockchain system and the compatibility issues with a large number of IIoT devices running together,the mainstream blockchain system cannot be applied to IIoT scenarios.In order to solve these problems,this paper proposes SBFT(Speculative Byzantine Consensus Protocol),a flexible and scalable blockchain consensus mechanism for the Industrial Internet of Things.SBFT has a consensus process based on speculation,improving the throughput and consensus speed of blockchain systems and reducing communication overhead.In order to improve the compatibility and scalability of the blockchain system,we select some nodes to participate in the consensus,and these nodes have better performance in the network.Since multiple properties determine node performance,we abstract the node selection problem as a joint optimization problem and use Dueling Deep Q Learning(DQL)to solve it.Finally,we evaluate the performance of the scheme through simulation,and the simulation results prove the superiority of our scheme. 展开更多
关键词 Industrial Internet of Things Byzantine fault tolerance speculative consensus mechanism Markov decision process deep reinforcement learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部