A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial...A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial information of template are ex- tracted and generalized as the template feature. At the same time, the codebook dictionary of local contour is also built up. Secondly, based on the codebook dictionary, sliding-window mechanism and the vote algorithm are used to select initial candidate object win- dows. Lastly, the final object windows are got from initial candidate windows based on local and spatial structure feature matching. Experimental results demonstrate that the proposed approach is able to consistently identify and accurately detect the objects with better performance than the existing methods.展开更多
The rapid increase of user-generated content (UGC) is a rich source for reputation management of enti- ties, products, and services. Looking at online product re- views as a concrete example, in reviews, customers u...The rapid increase of user-generated content (UGC) is a rich source for reputation management of enti- ties, products, and services. Looking at online product re- views as a concrete example, in reviews, customers usually give opinions on multiple attributes of products, therefore the challenge is to automatically extract and cluster attributes that are mentioned. In this paper, we investigate efficient at- tribute extraction models using a semi-supervised approach. Specifically, we formulate the attribute extraction issue as a sequence labeling task and design a bootstrapped schema to train the extraction models by leveraging a small quantity of labeled reviews and a larger number of unlabeled reviews. In addition, we propose a clustering By committee (CBC) ap- proach to cluster attributes according to their semantic simi- larity. Experimental results on real world datasets show that the proposed approach is effective.展开更多
基金supported by the National Natural Science Foundation of China(60972095)Shaanxi Province Education Office Research Plan(2010JK589)
文摘A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial information of template are ex- tracted and generalized as the template feature. At the same time, the codebook dictionary of local contour is also built up. Secondly, based on the codebook dictionary, sliding-window mechanism and the vote algorithm are used to select initial candidate object win- dows. Lastly, the final object windows are got from initial candidate windows based on local and spatial structure feature matching. Experimental results demonstrate that the proposed approach is able to consistently identify and accurately detect the objects with better performance than the existing methods.
文摘The rapid increase of user-generated content (UGC) is a rich source for reputation management of enti- ties, products, and services. Looking at online product re- views as a concrete example, in reviews, customers usually give opinions on multiple attributes of products, therefore the challenge is to automatically extract and cluster attributes that are mentioned. In this paper, we investigate efficient at- tribute extraction models using a semi-supervised approach. Specifically, we formulate the attribute extraction issue as a sequence labeling task and design a bootstrapped schema to train the extraction models by leveraging a small quantity of labeled reviews and a larger number of unlabeled reviews. In addition, we propose a clustering By committee (CBC) ap- proach to cluster attributes according to their semantic simi- larity. Experimental results on real world datasets show that the proposed approach is effective.