期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Note on a New Construction of Kantorovich Form q-Bernstein Operators Related to Shape Parameter λ 被引量:1
1
作者 Qingbo Cai Resat Aslan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1479-1493,共15页
The main purpose of this paper is to introduce some approximation properties of a Kantorovich kind q-Bernstein operators related to B′ezier basis functions with shape parameterλ∈[−1,1].Firstly,we compute some basic... The main purpose of this paper is to introduce some approximation properties of a Kantorovich kind q-Bernstein operators related to B′ezier basis functions with shape parameterλ∈[−1,1].Firstly,we compute some basic results such as moments and central moments,and derive the Korovkin type approximation theorem for these operators.Next,we estimate the order of convergence in terms of the usual modulus of continuity,for the functions belong to Lipschitz-type class and Peetre’s K-functional,respectively.Lastly,with the aid of Maple software,we present the comparison of the convergence of these newly defined operators to the certain function with some graphical illustrations and error estimation table. 展开更多
关键词 Q-CALCULUS q)-Bernstein polynomials order of convergence Lipschitz-type function Peetre’s K-functional
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部