As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ en...As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ environmental conditions,leading to distortion of the measured parameters.Herein,a coring and testing systems retaining in-situ geological conditions is presented:the coring system that obtains in-situ rock samples,and the transfer and testing system that stores and analyzes the rocks under a reconstructed environment.The ICP-Coring system mainly consists of the pressure controller,active insulated core reactor and insulation layer and sealing film.The ultimate bearing strength of 100 MPa for pressurepreservation,temperature control accuracy of 0.97%for temperature-retained are realized.CH_(4)and CO permeability of the optimized sealing film are as low as 3.85 and 0.33 ppm/min.The average tensile elongation of the film is 152.4%and the light transmittance is reduced to 0%.Additionally,the pressure and steady-state temperature accuracy for reconstructing the in-situ environment of transfer and storage system up to 1%and±0.2 is achieved.The error recorded of the noncontact sensor ring made of lowdensity polymer is less than 6%than that of the contact test.The system can provide technical support for the deep in-situ rock mechanics research,improving deep resource acquisition capabilities and further clarifying deep-earth processes.展开更多
With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence d...With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence depths is the basis for exploring deep into the earth,with the core and premise being the acquisition and testing of deep in-situ core specimens.Based on the original idea of deep in-situ condition preserved coring(ICP-Coring)and testing,combined with theoretical modeling,numerical analysis,test platform development,indoor testing and engineering application,the principles and technologies of deep ICP-Coring are developed.This principle and technology consists of five parts:in-situ pressurepreserved coring(IPP-Coring),in-situ substance-preserved coring(ISP-Coring),in-situ temperaturepreserved coring(ITP-Coring),in-situ light-preserved coring(ILP-Coring),and in-situ moisturepreserved coring(IMP-Coring).The theory and technology of temperature and pressure reconstruction at different occurrence depths and in different environments are proposed,and prototype trial production was completed by following the principle of displacement and tests based on the in-situ reconstructed environment.The notable advances are as follows:(1)Deep in-situ coring system:A pressure-preserved controller with an ultimate bearing capacity greater than 140 MPa,highperformance(temperature-resistant,pressure-resistant,and low thermally conductive)temperaturepreserved materials,an active temperature control system,and high-barrier quality-preserved membrane materials were developed;a deep ICP-Coring capacity calibration platform was independently developed,a deep in-situ coring technology system was developed,and the acquisition of deep in-situ cores was realized.(2)In-situ storage displacement system:Following the dual-circuit hydraulic design idea,a single-drive source push-pull composite grabbing mechanism was designed;the design of the overall structure for the deep in-situ displacement storage system and ultrahigh pressure cabin structure was completed,which could realize docking the coring device and core displacement in the in-situ reconstructed environment.(3)Test analysis system:A noncontact acoustic-electric-magnetic test system was developed under the in-situ reconstructed environment,and the errors between the test results and traditional contact test results were mostly less than 10%;a detachable deep in-situ core true triaxial test system was developed,which could perform loading tests for deep in-situ cores.The relevant technological achievements were successfully applied to the exploration and development of deep resources,such as deep mines,deep-sea natural gas hydrates,and deep oil and gas.The research results provide technical and equipment support for the construction of a theoretical system for deep in-situ rock mechanics,the development of deep earth resources and energy,and the scientific exploration of different layers and occurrence depths(deep and ultradeep)of the Earth.展开更多
目的·探讨磷脂酰乙醇胺(phosphatidylethanolamine,PE)对巨噬细胞衰老及其衰老相关分泌表型的影响和分子机制,以及PE在肝损伤中的病理生理学意义。方法·利用阿霉素建立巨噬细胞衰老模型,并给予PE处理。通过腹腔联合注射PE和...目的·探讨磷脂酰乙醇胺(phosphatidylethanolamine,PE)对巨噬细胞衰老及其衰老相关分泌表型的影响和分子机制,以及PE在肝损伤中的病理生理学意义。方法·利用阿霉素建立巨噬细胞衰老模型,并给予PE处理。通过腹腔联合注射PE和脂多糖构建小鼠肝损伤模型,观察PE对肝损伤的影响。采用衰老相关β-半乳糖苷酶(senescence-associatedβ-galactosidase,SA-β-gal)染色,结合实时荧光定量PCR、Western blotting等检测细胞周期抑制蛋白p21、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白介素-6(interleukin-6,IL-6)等衰老标志物及衰老相关分泌表型生物活性因子的表达水平。通过RNA测序结合基因本体论(Gene Ontology,GO)细胞组分富集分析、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析、基因集变异分析(Gene Set Variation Analysis,GSVA)和基因集富集分析(Gene Set Enrichment Analysis,GSEA)筛选PE促进巨噬细胞衰老的信号通路及分子机制。通过体内和体外实验检测内质网应激相关通路中肌醇需求酶1α(inositol requiring enzyme 1α,IRE1α)、剪接型X盒结合蛋白1(spliced X box binding protein 1,XBP1s)、转录激活因子6(activating transcription factor 6,ATF6)、ATF4、C/EBP同源蛋白(C/EBP homologous protein,CHOP)的表达。结果·PE显著促进巨噬细胞衰老标志物SA-β-gal、p21、p16及衰老相关分泌表型生物活性因子的表达。RNA测序分析显示内质网应激参与PE促进衰老相关分泌表型表达的作用。进一步的实验表明,PE通过激活巨噬细胞内质网应激信号通路促进巨噬细胞衰老及衰老相关分泌表型表达。体内实验证实PE通过内质网应激加剧脂多糖诱导的小鼠肝损伤。结论·PE通过激活内质网应激信号通路,促进巨噬细胞衰老及衰老相关分泌表型生物活性因子分泌,进而加重脂多糖诱导的肝损伤。展开更多
基金supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)National Natural Science Foundation of China(No.51827901,U2013603,and 52004166)。
文摘As shallow resources are increasingly depleted,the mechanics'theory and testing technology of deep insitu rock has become urgent.Traditional coring technologies obtain rock samples without retaining the in-situ environmental conditions,leading to distortion of the measured parameters.Herein,a coring and testing systems retaining in-situ geological conditions is presented:the coring system that obtains in-situ rock samples,and the transfer and testing system that stores and analyzes the rocks under a reconstructed environment.The ICP-Coring system mainly consists of the pressure controller,active insulated core reactor and insulation layer and sealing film.The ultimate bearing strength of 100 MPa for pressurepreservation,temperature control accuracy of 0.97%for temperature-retained are realized.CH_(4)and CO permeability of the optimized sealing film are as low as 3.85 and 0.33 ppm/min.The average tensile elongation of the film is 152.4%and the light transmittance is reduced to 0%.Additionally,the pressure and steady-state temperature accuracy for reconstructing the in-situ environment of transfer and storage system up to 1%and±0.2 is achieved.The error recorded of the noncontact sensor ring made of lowdensity polymer is less than 6%than that of the contact test.The system can provide technical support for the deep in-situ rock mechanics research,improving deep resource acquisition capabilities and further clarifying deep-earth processes.
基金the National Natural Science Foundation of China(No.51827901)the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)Shenzhen Key Research Projects(No.JSGG20220831105002005).
文摘With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence depths is the basis for exploring deep into the earth,with the core and premise being the acquisition and testing of deep in-situ core specimens.Based on the original idea of deep in-situ condition preserved coring(ICP-Coring)and testing,combined with theoretical modeling,numerical analysis,test platform development,indoor testing and engineering application,the principles and technologies of deep ICP-Coring are developed.This principle and technology consists of five parts:in-situ pressurepreserved coring(IPP-Coring),in-situ substance-preserved coring(ISP-Coring),in-situ temperaturepreserved coring(ITP-Coring),in-situ light-preserved coring(ILP-Coring),and in-situ moisturepreserved coring(IMP-Coring).The theory and technology of temperature and pressure reconstruction at different occurrence depths and in different environments are proposed,and prototype trial production was completed by following the principle of displacement and tests based on the in-situ reconstructed environment.The notable advances are as follows:(1)Deep in-situ coring system:A pressure-preserved controller with an ultimate bearing capacity greater than 140 MPa,highperformance(temperature-resistant,pressure-resistant,and low thermally conductive)temperaturepreserved materials,an active temperature control system,and high-barrier quality-preserved membrane materials were developed;a deep ICP-Coring capacity calibration platform was independently developed,a deep in-situ coring technology system was developed,and the acquisition of deep in-situ cores was realized.(2)In-situ storage displacement system:Following the dual-circuit hydraulic design idea,a single-drive source push-pull composite grabbing mechanism was designed;the design of the overall structure for the deep in-situ displacement storage system and ultrahigh pressure cabin structure was completed,which could realize docking the coring device and core displacement in the in-situ reconstructed environment.(3)Test analysis system:A noncontact acoustic-electric-magnetic test system was developed under the in-situ reconstructed environment,and the errors between the test results and traditional contact test results were mostly less than 10%;a detachable deep in-situ core true triaxial test system was developed,which could perform loading tests for deep in-situ cores.The relevant technological achievements were successfully applied to the exploration and development of deep resources,such as deep mines,deep-sea natural gas hydrates,and deep oil and gas.The research results provide technical and equipment support for the construction of a theoretical system for deep in-situ rock mechanics,the development of deep earth resources and energy,and the scientific exploration of different layers and occurrence depths(deep and ultradeep)of the Earth.
文摘目的·探讨磷脂酰乙醇胺(phosphatidylethanolamine,PE)对巨噬细胞衰老及其衰老相关分泌表型的影响和分子机制,以及PE在肝损伤中的病理生理学意义。方法·利用阿霉素建立巨噬细胞衰老模型,并给予PE处理。通过腹腔联合注射PE和脂多糖构建小鼠肝损伤模型,观察PE对肝损伤的影响。采用衰老相关β-半乳糖苷酶(senescence-associatedβ-galactosidase,SA-β-gal)染色,结合实时荧光定量PCR、Western blotting等检测细胞周期抑制蛋白p21、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和白介素-6(interleukin-6,IL-6)等衰老标志物及衰老相关分泌表型生物活性因子的表达水平。通过RNA测序结合基因本体论(Gene Ontology,GO)细胞组分富集分析、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析、基因集变异分析(Gene Set Variation Analysis,GSVA)和基因集富集分析(Gene Set Enrichment Analysis,GSEA)筛选PE促进巨噬细胞衰老的信号通路及分子机制。通过体内和体外实验检测内质网应激相关通路中肌醇需求酶1α(inositol requiring enzyme 1α,IRE1α)、剪接型X盒结合蛋白1(spliced X box binding protein 1,XBP1s)、转录激活因子6(activating transcription factor 6,ATF6)、ATF4、C/EBP同源蛋白(C/EBP homologous protein,CHOP)的表达。结果·PE显著促进巨噬细胞衰老标志物SA-β-gal、p21、p16及衰老相关分泌表型生物活性因子的表达。RNA测序分析显示内质网应激参与PE促进衰老相关分泌表型表达的作用。进一步的实验表明,PE通过激活巨噬细胞内质网应激信号通路促进巨噬细胞衰老及衰老相关分泌表型表达。体内实验证实PE通过内质网应激加剧脂多糖诱导的小鼠肝损伤。结论·PE通过激活内质网应激信号通路,促进巨噬细胞衰老及衰老相关分泌表型生物活性因子分泌,进而加重脂多糖诱导的肝损伤。