Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interd...Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations.展开更多
The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all ...The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.展开更多
Cladding light strippers(CLSs)are essential components for high-power monolithic fiber laser systems.Because they allow for bending of the fiber,which leads to an excellent stripping efficiency of light with a low ray...Cladding light strippers(CLSs)are essential components for high-power monolithic fiber laser systems.Because they allow for bending of the fiber,which leads to an excellent stripping efficiency of light with a low ray angle,refractive index-based CLSs have an advantage over the commonly used alternative approaches.However,conventional high-index CLSs overheat at relatively low input power as the maximum temperature,located in a hot-spot,increases linearly with the input power.This applies particularly to CLSs in thulium-based fiber systems,where very low power can already lead to extreme heat generation due to the high cladding material absorption around 2μm.Here,we investigate materials with a highly negative thermooptical coefficient combined with a refractive index closely above glass to distribute the stripped power and heat uniformly along an increased fiber length.Analyzing multiple CLS geometries for fiber diameters of 125 and 400μm,we show record-high maximum input powers for single-material CLSs of 21.8 W for the signal(2039 nm)and 675 W for the pump wavelength(793 nm).Transmitting excess light instead of overheating,this wavelength-adaptable self-protecting CLS concept is fast to apply onsite in the lab and reaches stripping efficiencies of>40 dB in the bent version.展开更多
The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurrin...The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurring phenomenology as well as quantitative statements about the relative effects sizes as a function of target material and threat.The considered target materials are steel,aluminum,and magnesium.As threats,kinetic energy penetrator,explosively formed projectile,and shaped charge jet are used.For the investigated combinations,the measured overpressures vary by a factor of up to 5 for a variation of the material,by a factor of up to 7 for a variation of the threat,and by a factor larger than 15for a simultaneous variation of both.The obtained results as well as the experimental approach are relevant for the basic understanding of impact effects and risks due to material reactivity.The paper combines two main aims.Firstly,to provide a summary of own prior work in a coherent journal article and,secondly,to review and discuss these earlier results with a new perspective.展开更多
The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes ...The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes a sudden,local pressure rise,further expanding as primary shock wave in the fluid and developing a cavity.It is possible that the entire tank ruptures due to the loads transferred through the fluid to its surrounding structure.In the past decades,additionally to experimental investigations,HRAM has been studied using various computational approaches particularly focusing on the description of the Fluid-Structure Interaction(FSI).This article reviews the published experimental,analytical and numerical results and delivers a chronological overview since the end of World War II.Furthermore,HRAM mitigation measures are highlighted,which have been developed with the experimental,analytical and numerical toolboxes matured over the past 80 years.展开更多
This paper investigates the use of explainable artificial intelligence(XAI)and trustworthy artificial intelligence(TAI)methods for condition monitoring on a laser cutting machine.The focus is on the analysis of the ra...This paper investigates the use of explainable artificial intelligence(XAI)and trustworthy artificial intelligence(TAI)methods for condition monitoring on a laser cutting machine.The focus is on the analysis of the rack and pinion contact with wear being predicted by four differently derived adaptive-network-based fuzzy inference system(s)(ANFIS)models.Using both model-agnostic and model-specific parameters integrated in a weighted evaluation framework,the models are evaluated with respect to the effectiveness of explanations.This framework is based on the observation of the outputs of the individual layers of ANFIS,also focusing on aspects of two multivalued logics,namely fuzzy logic and support logic.The results show that the introduced weighted evaluation framework makes it possible to quantify the explainability of the individual models in terms of XAI and TAI.Finally,a preselection of a model for predicting the wear of the rack and pinion contact can be made.展开更多
Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders ...Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders of magnitude lower that the demand and consumption.Even though desert sand is sufficiently available,it is not usable for realizing stable concrete due to its surface shape.Against this background,the suitability of energy-efficient‘cold'dielectric barrier discharge plasma operated at atmospheric pressure for improving the properties of concrete produced from desert sand was investigated in this contribution.It is shown that such plasma treatment allows for a certain roughening and re-shaping of sand grains.As a result,the mass flow of treated sand is decreased due to an improved wedging of sand grains.This leads to a certain increase in compressive strength of concrete samples.Even though this increase is marginal,the suitability of the applied type of plasma for modification of the geometry and surface chemistry of sand grains was proven,showing its basic potential for the treatment and preconditioning of sand used for concrete,mortar or plastering.展开更多
In this paper,we present a novel approach to study the electrical properties of intact rock by combining impedance and vector network analyzer measurements in the frequency range from 5 Hz to 3 GHz.For the firsttime,t...In this paper,we present a novel approach to study the electrical properties of intact rock by combining impedance and vector network analyzer measurements in the frequency range from 5 Hz to 3 GHz.For the firsttime,this study enables electrical characterization of the exact same rock sample over nine orders of magnitude in frequency range,utilizing a coaxial cell apparatus with specificallyprepared rock samples.Three types of rocks(basalt,sandstone and granite)with low to intermediate porosity(12.24%,16.9%and 7.49%,respectively)were characterized at varying saturation levels.The relaxation behavior of the samples was quantifiedusing an advanced phenomenological model incorporating both the dielectric constant and electrical conductivity in the form of Debye and Cole-Cole representations.Across the frequency range,three distinct relaxation processes were identified:a high-frequency water process and two interfacial processes related to interactions between the aqueous pore solution and mineral particles(membrane relaxation and Maxwell-Wagner effects).Additionally,an apparent direct current conductivity was observed.This comprehensive broadband analysis represents a further step toward the in situ characterization of rocks using electromagnetic fieldmeasurement methods and demonstrates advancements in both methodology and understanding of rock properties compared to existing studies.展开更多
Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interfer...Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interferometry addresses these challenges using synthetic wavelengths,enabling a balance between extended measurement range and resolution by combining several synthetic wavelengths.This approach holds immense potential for diverse industrial applications,yet it remains largely untapped due to the lack of suitable light sources.Existing solutions are constrained by limited flexibility in synthetic-wavelength generation and slow switching speeds.We demonstrate a light source for multiwavelength interferometry based on electro-optic single-sideband modulation.It reliably generates synthetic wavelengths with arbitrary values from centimeters to meters and switching time below 30 ms.This breakthrough paves the way for dynamic reconfigurable multiwavelength interferometry capable of adapting to complex surfaces and operating efficiently even outside laboratory settings.These capabilities unlock the full potential of multiwavelength interferometry,offering unprecedented flexibility and speed for industrial and technological applications.展开更多
Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot ...Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot water.In order to reduce fossil energy use in the household sector,great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity andheat.Onepossibility is toconvertparts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of buildings,especially with older building stock where electrification of heat via heat pumps is difficult due to technical,acoustical,and economic reasons.A comprehensive dataset was generated by a bottom-up analysis with open governmental and statistical data to determine regional building types regarding energy demand,solar potential,and existing grid infrastructure.The buildings’connections to the electricity,gas,and district heating networks are considered.From this,a representative sample dataset was chosen as input for a newly developed energy system model based on energy flow simulation.The model simulates the interaction of hydrogen generation(HG)(from excess solar energy by electrolysis),storage in a metal-hydride storage(MHS)tank,and hydrogen use in a connected fuel cell(FC),forming a local PVPtGtHP(Photovoltaic Power-to-Gas-to-Heat-and-Power)network.Next to the seasonal hydrogen storage path(HSP),a battery will complete the system to forma hybrid energy storage system(HESS).Paired with seasonal time series for PV power,electricity and heat demand,and a model for connection to grid infrastructure,the simulation of different hydrogen applications and MHS placements aims to analyze operating times and energy share of the systems’equipment and existing infrastructure.The method to obtain the data set together with the simulationmodel presented can be used by energy planners for cities,communities,and building developers to analyze the potentials of a quarter or region and plan a transition towards a more energy-efficient and sustainable energy system.展开更多
Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species...Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species richness and identifying their suitable habitats is a fundamental prerequisite to setting efficient long-term conservation measures.This study focused on geographical patterns and estimations of species richness for herpetofauna widely spread Z.vivipara,N.natrix,V.berus,A.colchica,and protected in Latvia C.austriaca,E.orbicularis,L.agilis inhabiting northern(model territory Latvia)and southern(model territory Ukraine)part of their European range.The ultimate goal was to designate a conservation network that will meet long-term goals for survival of the target species in the context of climate change.We used stacked species distribution models for creating maps depicting the distribution of species richness under current and future(by 2050)climates for marginal reptilepopulations.Using cluster analysis,we showed that this herpeto-complex can be divided into“widespread species”and“forest species”.For all forest species we predicted a climate-driven reduction in their distribution range both North(Latvia)and South(Ukraine).The most vulnerable populations of“forest species”tend to be located in the South of their range,as a consequence of northward shifts by 2050.By 2050 the greatest reduction in range is predicted for currently widely spread Z.vivipara(by 1.4 times)and V.berus(by 2.2 times).In terms of designing an effective protected-area network,these results permit to identify priority conservation areas where the full ensemble of selected reptile species can be found,and confirms the relevance of abioticmulti-factor GIS-modelling for achieving this goal.展开更多
文摘Purpose:Interdisciplinary research has become a critical approach to addressing complex societal,economic,technological,and environmental challenges,driving innovation and integrating scientific knowledge.While interdisciplinarity indicators are widely used to evaluate research performance,the impact of classification granularity on these assessments remains underexplored.Design/methodology/approach:This study investigates how different levels of classification granularity-macro,meso,and micro-affect the evaluation of interdisciplinarity in research institutes.Using a dataset of 262 institutes from four major German non-university organizations(FHG,HGF,MPG,WGL)from 2018 to 2022,we examine inconsistencies in interdisciplinarity across levels,analyze ranking changes,and explore the influence of institutional fields and research focus(applied vs.basic).Findings:Our findings reveal significant inconsistencies in interdisciplinarity across classification levels,with rankings varying substantially.Notably,the Fraunhofer Society(FHG),which performs well at the macro level,experiences significant ranking declines at meso and micro levels.Normalizing interdisciplinarity by research field confirmed that these declines persist.The research focus of institutes,whether applied,basic,or mixed,does not significantly explain the observed ranking dynamics.Research limitations:This study has only considered the publication-based dimension of institutional interdisciplinarity and has not explored other aspects.Practical implications:The findings provide insights for policymakers,research managers,and scholars to better interpret interdisciplinarity metrics and support interdisciplinary research effectively.Originality/value:This study underscores the critical role of classification granularity in interdisciplinarity assessment and emphasizes the need for standardized approaches to ensure robust and fair evaluations.
文摘The increasing presence of drones seen on the battlefields in modern conflicts poses new threats to manned military aircraft or rotorcraft.In order to assess this potential threat,this manuscript first summarizes all confirmed and suspected collisions between drones and aerostructures and the damage resulting from these collisions.Furthermore,this manuscript reviews experimental and numerical investigations on collision of drones with aerostructures.Additionally,some light is shed onto current regulation for drone operations intended to avoid collisions between drones and aircraft.Whilst these regulatory measures can prevent commercial aircraft to collide with drones,the authors believe that there is an inherent threat for civil and military rotorcraft due to their structural design and the fact that it is not possible to completely separate the airspace between drone operations and rotorcraft operations,in particular in the context of rescue missions in an urban or hostile environment.Furthermore,the stealth capability of 5th generation fighters may be compromised by damage suffered from collision with drones.
文摘Cladding light strippers(CLSs)are essential components for high-power monolithic fiber laser systems.Because they allow for bending of the fiber,which leads to an excellent stripping efficiency of light with a low ray angle,refractive index-based CLSs have an advantage over the commonly used alternative approaches.However,conventional high-index CLSs overheat at relatively low input power as the maximum temperature,located in a hot-spot,increases linearly with the input power.This applies particularly to CLSs in thulium-based fiber systems,where very low power can already lead to extreme heat generation due to the high cladding material absorption around 2μm.Here,we investigate materials with a highly negative thermooptical coefficient combined with a refractive index closely above glass to distribute the stripped power and heat uniformly along an increased fiber length.Analyzing multiple CLS geometries for fiber diameters of 125 and 400μm,we show record-high maximum input powers for single-material CLSs of 21.8 W for the signal(2039 nm)and 675 W for the pump wavelength(793 nm).Transmitting excess light instead of overheating,this wavelength-adaptable self-protecting CLS concept is fast to apply onsite in the lab and reaches stripping efficiencies of>40 dB in the bent version.
文摘The pressure and temperature increase resulting from the impact of different threats onto target materials is analyzed with a unified laboratory-scale setup.This allows deriving qualitative information on the occurring phenomenology as well as quantitative statements about the relative effects sizes as a function of target material and threat.The considered target materials are steel,aluminum,and magnesium.As threats,kinetic energy penetrator,explosively formed projectile,and shaped charge jet are used.For the investigated combinations,the measured overpressures vary by a factor of up to 5 for a variation of the material,by a factor of up to 7 for a variation of the threat,and by a factor larger than 15for a simultaneous variation of both.The obtained results as well as the experimental approach are relevant for the basic understanding of impact effects and risks due to material reactivity.The paper combines two main aims.Firstly,to provide a summary of own prior work in a coherent journal article and,secondly,to review and discuss these earlier results with a new perspective.
文摘The Hydrodynamic Ram(HRAM)effect occurs when a high kinetic energy projectile penetrates a fluid filled area,e.g.,a liquid filled tank.The projectile transfers its momentum and kinetic energy to the fluid,what causes a sudden,local pressure rise,further expanding as primary shock wave in the fluid and developing a cavity.It is possible that the entire tank ruptures due to the loads transferred through the fluid to its surrounding structure.In the past decades,additionally to experimental investigations,HRAM has been studied using various computational approaches particularly focusing on the description of the Fluid-Structure Interaction(FSI).This article reviews the published experimental,analytical and numerical results and delivers a chronological overview since the end of World War II.Furthermore,HRAM mitigation measures are highlighted,which have been developed with the experimental,analytical and numerical toolboxes matured over the past 80 years.
基金This project(ProKInect N°02P20A090)was funded by the German Federal Ministry of Education and Research(BMBF)within the“The Future of Value Creation-Research on Production,Services and Work”program and managed by the Project Management Agency Karlsruhe(PTKA).The support is greatly acknowledged.
文摘This paper investigates the use of explainable artificial intelligence(XAI)and trustworthy artificial intelligence(TAI)methods for condition monitoring on a laser cutting machine.The focus is on the analysis of the rack and pinion contact with wear being predicted by four differently derived adaptive-network-based fuzzy inference system(s)(ANFIS)models.Using both model-agnostic and model-specific parameters integrated in a weighted evaluation framework,the models are evaluated with respect to the effectiveness of explanations.This framework is based on the observation of the outputs of the individual layers of ANFIS,also focusing on aspects of two multivalued logics,namely fuzzy logic and support logic.The results show that the introduced weighted evaluation framework makes it possible to quantify the explainability of the individual models in terms of XAI and TAI.Finally,a preselection of a model for predicting the wear of the rack and pinion contact can be made.
基金funded by the Bundesministerium für Bildung und Forschung(Nos.13FH6I06IA and 13FH6I08IA)。
文摘Due to the continuously increasing building and construction industry,sand has become one of the most questioned raw materials worldwide.However,the available amount of sand suitable for concrete production is orders of magnitude lower that the demand and consumption.Even though desert sand is sufficiently available,it is not usable for realizing stable concrete due to its surface shape.Against this background,the suitability of energy-efficient‘cold'dielectric barrier discharge plasma operated at atmospheric pressure for improving the properties of concrete produced from desert sand was investigated in this contribution.It is shown that such plasma treatment allows for a certain roughening and re-shaping of sand grains.As a result,the mass flow of treated sand is decreased due to an improved wedging of sand grains.This leads to a certain increase in compressive strength of concrete samples.Even though this increase is marginal,the suitability of the applied type of plasma for modification of the geometry and surface chemistry of sand grains was proven,showing its basic potential for the treatment and preconditioning of sand used for concrete,mortar or plastering.
文摘In this paper,we present a novel approach to study the electrical properties of intact rock by combining impedance and vector network analyzer measurements in the frequency range from 5 Hz to 3 GHz.For the firsttime,this study enables electrical characterization of the exact same rock sample over nine orders of magnitude in frequency range,utilizing a coaxial cell apparatus with specificallyprepared rock samples.Three types of rocks(basalt,sandstone and granite)with low to intermediate porosity(12.24%,16.9%and 7.49%,respectively)were characterized at varying saturation levels.The relaxation behavior of the samples was quantifiedusing an advanced phenomenological model incorporating both the dielectric constant and electrical conductivity in the form of Debye and Cole-Cole representations.Across the frequency range,three distinct relaxation processes were identified:a high-frequency water process and two interfacial processes related to interactions between the aqueous pore solution and mineral particles(membrane relaxation and Maxwell-Wagner effects).Additionally,an apparent direct current conductivity was observed.This comprehensive broadband analysis represents a further step toward the in situ characterization of rocks using electromagnetic fieldmeasurement methods and demonstrates advancements in both methodology and understanding of rock properties compared to existing studies.
基金supported by the German Federal Ministry of Education and Research,Research Program Quantum Systems(Grant No.13N16774).
文摘Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interferometry addresses these challenges using synthetic wavelengths,enabling a balance between extended measurement range and resolution by combining several synthetic wavelengths.This approach holds immense potential for diverse industrial applications,yet it remains largely untapped due to the lack of suitable light sources.Existing solutions are constrained by limited flexibility in synthetic-wavelength generation and slow switching speeds.We demonstrate a light source for multiwavelength interferometry based on electro-optic single-sideband modulation.It reliably generates synthetic wavelengths with arbitrary values from centimeters to meters and switching time below 30 ms.This breakthrough paves the way for dynamic reconfigurable multiwavelength interferometry capable of adapting to complex surfaces and operating efficiently even outside laboratory settings.These capabilities unlock the full potential of multiwavelength interferometry,offering unprecedented flexibility and speed for industrial and technological applications.
基金supported by the German Federal Ministry for Economic Affairs and Climate Action[BMWK SimBench-Sektor project,grant number 03EI1058C].
文摘Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot water.In order to reduce fossil energy use in the household sector,great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity andheat.Onepossibility is toconvertparts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of buildings,especially with older building stock where electrification of heat via heat pumps is difficult due to technical,acoustical,and economic reasons.A comprehensive dataset was generated by a bottom-up analysis with open governmental and statistical data to determine regional building types regarding energy demand,solar potential,and existing grid infrastructure.The buildings’connections to the electricity,gas,and district heating networks are considered.From this,a representative sample dataset was chosen as input for a newly developed energy system model based on energy flow simulation.The model simulates the interaction of hydrogen generation(HG)(from excess solar energy by electrolysis),storage in a metal-hydride storage(MHS)tank,and hydrogen use in a connected fuel cell(FC),forming a local PVPtGtHP(Photovoltaic Power-to-Gas-to-Heat-and-Power)network.Next to the seasonal hydrogen storage path(HSP),a battery will complete the system to forma hybrid energy storage system(HESS).Paired with seasonal time series for PV power,electricity and heat demand,and a model for connection to grid infrastructure,the simulation of different hydrogen applications and MHS placements aims to analyze operating times and energy share of the systems’equipment and existing infrastructure.The method to obtain the data set together with the simulationmodel presented can be used by energy planners for cities,communities,and building developers to analyze the potentials of a quarter or region and plan a transition towards a more energy-efficient and sustainable energy system.
文摘Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species richness and identifying their suitable habitats is a fundamental prerequisite to setting efficient long-term conservation measures.This study focused on geographical patterns and estimations of species richness for herpetofauna widely spread Z.vivipara,N.natrix,V.berus,A.colchica,and protected in Latvia C.austriaca,E.orbicularis,L.agilis inhabiting northern(model territory Latvia)and southern(model territory Ukraine)part of their European range.The ultimate goal was to designate a conservation network that will meet long-term goals for survival of the target species in the context of climate change.We used stacked species distribution models for creating maps depicting the distribution of species richness under current and future(by 2050)climates for marginal reptilepopulations.Using cluster analysis,we showed that this herpeto-complex can be divided into“widespread species”and“forest species”.For all forest species we predicted a climate-driven reduction in their distribution range both North(Latvia)and South(Ukraine).The most vulnerable populations of“forest species”tend to be located in the South of their range,as a consequence of northward shifts by 2050.By 2050 the greatest reduction in range is predicted for currently widely spread Z.vivipara(by 1.4 times)and V.berus(by 2.2 times).In terms of designing an effective protected-area network,these results permit to identify priority conservation areas where the full ensemble of selected reptile species can be found,and confirms the relevance of abioticmulti-factor GIS-modelling for achieving this goal.