High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic p...High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic pyrolysis was conducted at 550℃ and the volatiles formed were fed in-line to the oxidative steam reforming step(space-time 3.12 gcat min gHDPE−1;ER=0.2 and steam/plastic=3)operating at 700℃.The influence Ni based reforming catalyst support(Al_(2)O_(3),ZrO_(2),SiO_(2))and promoter(CeO_(2),La_(2)O_(3))have on HDPE pyrolysis volatiles conversion and H_(2) production was assessed.The catalysts were prepared by the wet impregnation and they were characterized by means of N_(2) adsorption-desorption,X-ray fluorescence,temperature-programmed reduction and X-ray powder diffraction.A preliminary study on coke deposition and the deterioration of catalysts properties was carried out,by analyzing the tested catalysts through temperature programmed oxidation of coke,transmission electron microscopy,and N_(2) adsorption-desorption.Among the supports tested,ZrO_(2) showed the best performance,attaining conversion and H_(2) production values of 92.2% and 12.8 wt%,respectively.Concerning promoted catalysts,they led to similar conversion values(around 90%),but significant differences were observed in H_(2) production.Thus,higher H_(2) productions were obtained on the Ni/La_(2)O_(3)-Al_(2)O_(3) catalyst(12.1 wt%)than on CeO_(2) promoted catalysts due to La_(2)O_(3) capability for enhancing water adsorption on the catalyst surface.展开更多
Over recent decades,carbon-based chemical sensor technologies have advanced significantly.Nevertheless,significant opportunities persist for enhancing analyte recognition capabilities,particularly in complex environme...Over recent decades,carbon-based chemical sensor technologies have advanced significantly.Nevertheless,significant opportunities persist for enhancing analyte recognition capabilities,particularly in complex environments.Conventional monovariable sensors exhibit inherent limitations,such as susceptibility to interference from coexisting analytes,which results in response overlap.Although sensor arrays,through modification of multiple sensing materials,offer a potential solution for analyte recognition,their practical applications are constrained by intricate material modification processes.In this context,multivariable chemical sensors have emerged as a promising alternative,enabling the generation of multiple outputs to construct a comprehensive sensing space for analyte recognition,while utilizing a single sensing material.Among various carbon-based materials,carbon nanotubes(CNTs)and graphene have emerged as ideal candidates for constructing high-performance chemical sensors,owing to their well-established batch fabrication processes,superior electrical properties,and outstanding sensing capabilities.This review examines the progress of carbon-based multivariable chemical sensors,focusing on CNTs/graphene as sensing materials and field-effect transistors as transducers for analyte recognition.The discussion encompasses fundamental aspects of these sensors,including sensing materials,sensor architectures,performance metrics,pattern recognition algorithms,and multivariable sensing mechanism.Furthermore,the review highlights innovative multivariable extraction schemes and their practical applications when integrated with advanced pattern recognition algorithms.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
Inflammatory reflex and cholinergic anti-inflammatory pathway:Innate immune system triggers a local inflammatory response following an injury or a pathogen invasion.Likewise,this inflammatory response is limited by ra...Inflammatory reflex and cholinergic anti-inflammatory pathway:Innate immune system triggers a local inflammatory response following an injury or a pathogen invasion.Likewise,this inflammatory response is limited by rapid,localized,and adaptive anti-inflammatory responses which are crucial for maintaining homeostasis.Hence,the loss of these responses converts a limited and protective inflammatory response into an excessive and harmful response.Anti-inflammatory responses are integrated into the central nervous system,since the central nervous system accumulates information about harmful events,activates defenses,and builds memory for survival.At the same time,it has been demonstrated that hypothalamic neuronal signaling can be altered by inflammation in peripheral tissues.Additionally,immune cells release neuropeptides and neurotransmitters such as acetylcholine(ACh),the main neurotransmitter of the parasympathetic autonomic nervous system,evidencing the communication between the immune and nervous systems(Tracey,2002).展开更多
Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity an...Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity and ancestry(GBD 2016 Motor Neuron Disease Colla borators,2018).While~10% of diagnoses involve a family history(fALS),most cases are considered sporadic(sALS).However,population-based studies suggest that even cases without a common index mutation impart heritability(Ryan et al.,2019),indicating a crucial role of rare and as yet unknown genetic denominators.展开更多
The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It ha...The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It has been suggested that the size of the brain(brain reserve) and the extent of neural connections acquired through life(neural reserve) set a threshold beyond which noticeable impairments occur.In contrast,cognitive reserve refers to the brain's ability to adapt and reo rganize stru cturally and functionally to resist damage and maintain function,including neural reserve and brain maintenance,resilience,and compensation(Verkhratsky and Zorec,2024).展开更多
Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion ...Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion batteries(DIBs)can achieve high working voltage due to high intercalation potential of cathode.Herein,we propose a DIB configuration in which LTO is used as anode and the working voltage was 3.5 V.This DIB achieves a maximum specific energy of 140 Wh/kg at a specific power of 35 W/kg,and the specific power of 2933 W/kg can be obtained with a remaining specific energy of 11 Wh/kg.Traditional LIB material shows greatly improved properties in the DIB configuration.Thus,reversing its disadvantage leads to upgraded performance of batteries.Our configuration has also widened the horizon of materials for DIBs.展开更多
This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange.To achieve the objectives,the study uses descriptive statistics;tests including var...This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange.To achieve the objectives,the study uses descriptive statistics;tests including variance ratio,Augmented Dickey-Fuller,Phillips-Perron,and Kwiatkowski Phillips Schmidt and Shin;and Autoregressive Integrated Moving Average(ARIMA).The analysis forecasts daily stock returns for the S&P BSE Sensex and S&P BSE IT time series,using the ARIMA model.The results reveal that the mean returns of both indices are positive but near zero.This is indicative of a regressive tendency in the longterm.The forecasted values of S&P BSE Sensex and S&P BSE IT are almost equal to their actual values,with few deviations.Hence,the ARIMA model is capable of predicting medium-or long-term horizons using historical values of S&P BSE Sensex and S&P BSE IT.展开更多
For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate...For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate/active materials/electrolyte interfaces. Herein by taking Li ion battery as example, we propose a semiconductor-electrochemistry model by which a general but novel insight has been gained into interfacial effect in batteries. Different from those traditional viewpoints, this derived model lies across from physics to electrochemistry. A reaction driving force can be expressed in terms of Fermi energy change,based on the tradeoff between electronic and ionic concentration at the reaction interfacial region. Therefore, at thermodynamic-controlled interface I of substrate/electrode, increasing contact areas can afford higher activity for active materials. Whereas at kinetically-governed interface II of electrode/electrolyte or inside active materials, it is crucial to guarantee high-reaction Li ionic concentration, with which some sufficient reaction degrees can reach.展开更多
Increasing attention has been paid to rechargeable aqueous batteries due to their high safety and low cost.However,they remain in their infancy because of the limited choice of available anode materials with high spec...Increasing attention has been paid to rechargeable aqueous batteries due to their high safety and low cost.However,they remain in their infancy because of the limited choice of available anode materials with high specific capacity and satisfying cycling performance.Bi metal with layered structure can act as an ideal anode material with high capacity;however,the energy storage mechanism has not well elucidated.Herein,we demonstrate that Bi metal enables affording ultra-high specific capacity(254.3 mAh g^-1),superior rate capability and a capacity retention of 88.8%after 1600 cycles.Different from the previously-reported redox reaction mechanisms of Bi electrode,efficient(de)alloying of K+is responsible for its excellent performance.An excellent aqueous Bi battery is fabricated by matching Bi anode with Co(OH)2 cathode in KOH(1 M)electrolyte.Its outstanding performance is quite adequate and competitive for electrochemical energy storage devices.展开更多
The crystallization kinetics of semicrystalline polymers is often studied with isothermal experiments and analyzed by fitting the data with analytical expressions of the Avrami and Lauritzen and Hoffman(LH)theories.To...The crystallization kinetics of semicrystalline polymers is often studied with isothermal experiments and analyzed by fitting the data with analytical expressions of the Avrami and Lauritzen and Hoffman(LH)theories.To correctly carry out the analysis,precautions in both experiments and data fitting should be taken.Here,we systematically discussed the factors that influence the validity of the crystallization kinetics study.The basic concepts and fundamentals of the Avrami and LH theories were introduced at first.Then,experimental protocols were discussed in detail.To clarify the impact of various experimental parameters,selected common polymers,i.e.,polypropylene and polylactide,were studied using various experimental techniques(i.e.,differential scanning calorimetry and polarized light optical microscopy).Common mistakes were simulated under conditions when non-ideal experimental parameters were applied.Furthermore,from a practical point of view,we show how to fit the experimental data to the Avrami and the LH theories,using an Origin■App developed by us.展开更多
The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip...The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,and policy makers in their respective area of studies.展开更多
The increased demand of electronic devices promotes the development of advanced and more efficient energy storage devices, such as batteries. Lithium-ion batteries (LIBs) are the most studied battery systems due to th...The increased demand of electronic devices promotes the development of advanced and more efficient energy storage devices, such as batteries. Lithium-ion batteries (LIBs) are the most studied battery systems due to their high performance. Among the different battery components, the separator allows the control of lithium ion diffusion between the electrodes. To overcome some drawbacks of liquid electrolytes, including safety and environmental issues, solid polymer electrolytes (SPEs) are being developed. In this work, a UV photocurable polyurethane acrylate (PUA) resin has been blended with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) up to 30 wt% LiTFSI content to reach a maximum ionic conductivity of 0.0032 mS/cm at room temperature and 0.09 mS/cm at 100 ℃. Those values allowed applying the developed materials as photocurable SPE in Swagelok type Li/C-LiFePO_(4) half-cells, reaching a battery discharge capacity value of 139 mAh.g^(−1) at C/30 rate. Those results, together with the theoretical studies of the discharge capacity at different C-rates and temperatures for batteries with LiTFSI/PUA SPE demonstrate the suitability of the developed photocurable SPE for LIB applications.展开更多
Diabetes mellitus is referred as common metabolic abnormalities characterized as hyperglycemia,mainly caused due to insufficient production of insulin at cellular level or/and defects in insulin action.Such an endocri...Diabetes mellitus is referred as common metabolic abnormalities characterized as hyperglycemia,mainly caused due to insufficient production of insulin at cellular level or/and defects in insulin action.Such an endocrine disorder is responsible for serious health problems and its worldwide prevalence is rapidly increasing.Common management of diabetes by oral administration of drugs without creating any side effects is still considered a challenging task and increasing cost of con-ventional medicine in developing countries is another matter of concern.To address these issues,traditional preparations of herbal plant extracts in the form of medicines already gained immense attention.Swertia chirayita is one among such plants which is known for its hypoglycemic potential.Numerous chemical constituents with promising pharmacological properties have been identified from such plant extracts but still,such compounds have not been well characterized,specifically against human application.Hence,more research efforts are necessitated to understand exact mechanism of such compounds and to develop overall safety of such plant formulations.Present review clearly represents antidiabetic properties of Swertia chirayita extract,strategies to be taken to strengthen its safety application on humans and biotechnological interventions that ensure conservation of such endangered species to promote its future application in modern medicine.展开更多
Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to eith...Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.展开更多
The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,t...The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,transverse and longitudinal velocity distribution of the glasses with different compositions were studied.Furthermore,the influence of these factors on the width and thickness of the flexible glass plate was investigated.It is found that the internal and external heat exchange of glass has a dominant influence on the viscosity variation during the UTG forming process,which is inconsistent with the general viscosity-temperature dependence.The glass that first reaches the lower limit of forming viscosity can significantly resist the shrinking effect caused by surface tension,making the glass wider during the forming.If the original glass width remains unchanged,the glass thickness or feeding speed is reduced,wider and thinner flexible glasses can be produced.展开更多
In recent years,progressive developments have been observed in recent technologies and the production cost has been continuously decreasing.In such scenario,Internet of Things(IoT)network which is comprised of a set o...In recent years,progressive developments have been observed in recent technologies and the production cost has been continuously decreasing.In such scenario,Internet of Things(IoT)network which is comprised of a set of Unmanned Aerial Vehicles(UAV),has received more attention from civilian tomilitary applications.But network security poses a serious challenge to UAV networks whereas the intrusion detection system(IDS)is found to be an effective process to secure the UAV networks.Classical IDSs are not adequate to handle the latest computer networks that possess maximumbandwidth and data traffic.In order to improve the detection performance and reduce the false alarms generated by IDS,several researchers have employed Machine Learning(ML)and Deep Learning(DL)algorithms to address the intrusion detection problem.In this view,the current research article presents a deep reinforcement learning technique,optimized by BlackWidow Optimization(DRL-BWO)algorithm,for UAV networks.In addition,DRL involves an improved reinforcement learning-based Deep Belief Network(DBN)for intrusion detection.For parameter optimization of DRL technique,BWO algorithm is applied.It helps in improving the intrusion detection performance of UAV networks.An extensive set of experimental analysis was performed to highlight the supremacy of the proposed model.From the simulation values,it is evident that the proposed method is appropriate as it attained high precision,recall,F-measure,and accuracy values such as 0.985,0.993,0.988,and 0.989 respectively.展开更多
Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge pro...Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge product on the cathode side is crucial to achieve durable and efficient SOBs. In this work, the discharge efficiency of two graphene-based cathodes was evaluated and compared with that of a commercial gas diffusion layer. The discharge products formed at the surface of these cathodes in a glyme-based electrolyte were carefully studied using a range of characterization techniques. NaO_(2) was detected as the main discharge product regardless of the specific cathode material while small amounts of Na_(2)O_(2).2H_(2)O and carbonate-like side-products were detected by X-ray diffraction as well as by Raman and infrared spectroscopies. This work leverages the use of X-ray diffraction to determine the actual yield of NaO_(2)which is usually overlooked in this type of batteries. Thus, the proper quantification of the superoxide formed on the cathode surface is widely underestimated;even though is crucial for determining the efficiency of the battery while eliminating the parasitic chemistry in SOBs. Here, we develop an ex-situ analysis method to determine the amount of NaO_(2) generated upon discharge in SOBs by transmission X-ray diffraction and quantitative Rietveld analysis. This work unveils that the yield of NaO_(2) depends on the depth of discharge where high capacities lead to very low discharge efficiency, regardless of the used cathode. We anticipate that the methodology developed herein will provide a convenient diagnosis tool in future efforts to optimize the performance of the different cell components in SOBs.展开更多
Type 2 diabetes patients often suffer from microvascular compli-cations of diabetes.These complications,in turn,often lead to vision impair-ment.Diabetic Retinopathy(DR)detection in its early stage can rescue people f...Type 2 diabetes patients often suffer from microvascular compli-cations of diabetes.These complications,in turn,often lead to vision impair-ment.Diabetic Retinopathy(DR)detection in its early stage can rescue people from long-term complications that could lead to permanent blindness.In this study,we propose a complex deep convolutional neural network architecture with an inception module for automated diagnosis of DR.The proposed novel Hybrid Inception U-Net(HIUNET)comprises various inception modules connected in the U-Net fashion using activation maximization and filter map to produce the image mask.First,inception blocks were used to enlarge the model’s width by substituting it with primary convolutional layers.Then,aggregation blocks were used to deepen the model to extract more compact and discriminating features.Finally,the downsampling blocks were adopted to reduce the feature map size to decrease the learning time,and the upsam-pling blocks were used to resize the feature maps.This methodology ensured high prominence to lesion regions compared to the non-lesion regions.The performance of the proposed model was assessed on two benchmark compet-itive datasets called Asia Pacific Tele-Ophthalmology Society(APTOS)and KAGGLE,attaining accuracy rates of 95%and 92%,respectively.展开更多
Enabling the conversion of chemical energy of fuels directly into electricity without combustion,fuel cells are arousing great interest in both academia and industry.A typical case is the proton exchange membrane fuel...Enabling the conversion of chemical energy of fuels directly into electricity without combustion,fuel cells are arousing great interest in both academia and industry.A typical case is the proton exchange membrane fuel cell(PEMFC),already commercialized by automobile giants.For mass popularization,however,three major criteria must be balanced:performance,durability and cost.The electrocatalysts used in both the anode and cathode are the kernel of PEMFCs,being essential for efficient operation.First in the firing‐line is the oxygen reduction reaction(ORR)at the cathode,which is normally very sluggish:over six orders of magnitude slower than the anode hydrogen oxidation reaction(HOR)[1].Thus,considerable efforts have been made to improve the cathode ORR.Identifying the main active sites is key to the design of optimum materials for enhanced ORR.Considering the complex balance of preparation,performance and cost,the active sites of metal‐nitrogen‐carbon(M‐N‐C)catalysts are particularly promising.Coupled with the single metal atom(SMA)catalysts[2–5],two excellent M‐N‐C catalysts were recently reported[6,7].New insights were thereby gained into the delicate architecture of carbon‐based SMA catalysts for ORR.展开更多
文摘High density polyethylene(HDPE)pyrolysis and in-line oxidative steam reforming was carried out in a two-step reaction system consisting of a conical spouted bed reactor and a fluidized bed reactor.Continuous plastic pyrolysis was conducted at 550℃ and the volatiles formed were fed in-line to the oxidative steam reforming step(space-time 3.12 gcat min gHDPE−1;ER=0.2 and steam/plastic=3)operating at 700℃.The influence Ni based reforming catalyst support(Al_(2)O_(3),ZrO_(2),SiO_(2))and promoter(CeO_(2),La_(2)O_(3))have on HDPE pyrolysis volatiles conversion and H_(2) production was assessed.The catalysts were prepared by the wet impregnation and they were characterized by means of N_(2) adsorption-desorption,X-ray fluorescence,temperature-programmed reduction and X-ray powder diffraction.A preliminary study on coke deposition and the deterioration of catalysts properties was carried out,by analyzing the tested catalysts through temperature programmed oxidation of coke,transmission electron microscopy,and N_(2) adsorption-desorption.Among the supports tested,ZrO_(2) showed the best performance,attaining conversion and H_(2) production values of 92.2% and 12.8 wt%,respectively.Concerning promoted catalysts,they led to similar conversion values(around 90%),but significant differences were observed in H_(2) production.Thus,higher H_(2) productions were obtained on the Ni/La_(2)O_(3)-Al_(2)O_(3) catalyst(12.1 wt%)than on CeO_(2) promoted catalysts due to La_(2)O_(3) capability for enhancing water adsorption on the catalyst surface.
基金supported by National Natural Science Foundation of China(92263109,52305607 and 61904188)the Shanghai Rising-Star Program(22QA1410400)+1 种基金the Natural Science Foundation of Shanghai(23ZR1472200)the Medical Innovation Research Program of Shanghai Science and Technology Innovation Action Plan(Grant No.24DX2800100)。
文摘Over recent decades,carbon-based chemical sensor technologies have advanced significantly.Nevertheless,significant opportunities persist for enhancing analyte recognition capabilities,particularly in complex environments.Conventional monovariable sensors exhibit inherent limitations,such as susceptibility to interference from coexisting analytes,which results in response overlap.Although sensor arrays,through modification of multiple sensing materials,offer a potential solution for analyte recognition,their practical applications are constrained by intricate material modification processes.In this context,multivariable chemical sensors have emerged as a promising alternative,enabling the generation of multiple outputs to construct a comprehensive sensing space for analyte recognition,while utilizing a single sensing material.Among various carbon-based materials,carbon nanotubes(CNTs)and graphene have emerged as ideal candidates for constructing high-performance chemical sensors,owing to their well-established batch fabrication processes,superior electrical properties,and outstanding sensing capabilities.This review examines the progress of carbon-based multivariable chemical sensors,focusing on CNTs/graphene as sensing materials and field-effect transistors as transducers for analyte recognition.The discussion encompasses fundamental aspects of these sensors,including sensing materials,sensor architectures,performance metrics,pattern recognition algorithms,and multivariable sensing mechanism.Furthermore,the review highlights innovative multivariable extraction schemes and their practical applications when integrated with advanced pattern recognition algorithms.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金supported by grants from the Spanish Ministry of Education and Science(RYC-2017-22412,PID2019-107989RB-I00 and MDM-2017-0720)FundacióTV3(248/C/2020)(to AM).
文摘Inflammatory reflex and cholinergic anti-inflammatory pathway:Innate immune system triggers a local inflammatory response following an injury or a pathogen invasion.Likewise,this inflammatory response is limited by rapid,localized,and adaptive anti-inflammatory responses which are crucial for maintaining homeostasis.Hence,the loss of these responses converts a limited and protective inflammatory response into an excessive and harmful response.Anti-inflammatory responses are integrated into the central nervous system,since the central nervous system accumulates information about harmful events,activates defenses,and builds memory for survival.At the same time,it has been demonstrated that hypothalamic neuronal signaling can be altered by inflammation in peripheral tissues.Additionally,immune cells release neuropeptides and neurotransmitters such as acetylcholine(ACh),the main neurotransmitter of the parasympathetic autonomic nervous system,evidencing the communication between the immune and nervous systems(Tracey,2002).
基金The lab of AK obtained support from the Interdisciplinary Center for Clinical Research(IZKF)Jena(MSPProject ID:MSP09)+2 种基金DG and MJA B were supported by the Circular Vision project,which has received funding from the European Union's Horizon 2020 research and innovation program(Grant agreement No.899417)the Ministerio de Ciencia e Innovoción,Spain(Grant No.PID2020-119715GB-I00/AEI/10.13039/501100011033)the Instituto de Salud CarlosⅢ,Infrastructure of Precision Medicine associated with Science and Technology(IMPaCT)of the Strategic Action in Health(iDATAMP)(to MJAB)。
文摘Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity and ancestry(GBD 2016 Motor Neuron Disease Colla borators,2018).While~10% of diagnoses involve a family history(fALS),most cases are considered sporadic(sALS).However,population-based studies suggest that even cases without a common index mutation impart heritability(Ryan et al.,2019),indicating a crucial role of rare and as yet unknown genetic denominators.
文摘The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It has been suggested that the size of the brain(brain reserve) and the extent of neural connections acquired through life(neural reserve) set a threshold beyond which noticeable impairments occur.In contrast,cognitive reserve refers to the brain's ability to adapt and reo rganize stru cturally and functionally to resist damage and maintain function,including neural reserve and brain maintenance,resilience,and compensation(Verkhratsky and Zorec,2024).
基金the financial supports from the National Natural Science Foundation of China (51932003, 51902050, 51872115 & 51802110)Program for the Development of Science and Technology of Jilin Province (20190201309JC)+4 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics (2018WNLOKF022)the Jilin Province/Jilin University co-Construction Project-Funds for New Materials (SXGJSF2017-3, Branch-2/440050316A36)Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Fundamental Research Funds for the Central Universities JLU“Double-First Class” Discipline for Materials Science & Engineering.
文摘Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion batteries(DIBs)can achieve high working voltage due to high intercalation potential of cathode.Herein,we propose a DIB configuration in which LTO is used as anode and the working voltage was 3.5 V.This DIB achieves a maximum specific energy of 140 Wh/kg at a specific power of 35 W/kg,and the specific power of 2933 W/kg can be obtained with a remaining specific energy of 11 Wh/kg.Traditional LIB material shows greatly improved properties in the DIB configuration.Thus,reversing its disadvantage leads to upgraded performance of batteries.Our configuration has also widened the horizon of materials for DIBs.
文摘This study forecasts the return and volatility dynamics of S&P BSE Sensex and S&P BSE IT indices of the Bombay Stock Exchange.To achieve the objectives,the study uses descriptive statistics;tests including variance ratio,Augmented Dickey-Fuller,Phillips-Perron,and Kwiatkowski Phillips Schmidt and Shin;and Autoregressive Integrated Moving Average(ARIMA).The analysis forecasts daily stock returns for the S&P BSE Sensex and S&P BSE IT time series,using the ARIMA model.The results reveal that the mean returns of both indices are positive but near zero.This is indicative of a regressive tendency in the longterm.The forecasted values of S&P BSE Sensex and S&P BSE IT are almost equal to their actual values,with few deviations.Hence,the ARIMA model is capable of predicting medium-or long-term horizons using historical values of S&P BSE Sensex and S&P BSE IT.
基金the National Natural Science Foundation of China(51872115)Program for the Development of Science and Technology of Jilin Province(20190201309JC)+5 种基金the Fundamental Research Funds for the Central Universities(Grant no.531107051230)The Open Project Program of Wuhan National Laboratory for Optoelectronicsthe Jilin Province/Jilin University co-Construction Project-Funds for New Materials(SXGJSF2017-3,Branch-2/440050316A36)Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities,JLU“Double-First Class”Discipline for Materials Science&Engineering。
文摘For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate/active materials/electrolyte interfaces. Herein by taking Li ion battery as example, we propose a semiconductor-electrochemistry model by which a general but novel insight has been gained into interfacial effect in batteries. Different from those traditional viewpoints, this derived model lies across from physics to electrochemistry. A reaction driving force can be expressed in terms of Fermi energy change,based on the tradeoff between electronic and ionic concentration at the reaction interfacial region. Therefore, at thermodynamic-controlled interface I of substrate/electrode, increasing contact areas can afford higher activity for active materials. Whereas at kinetically-governed interface II of electrode/electrolyte or inside active materials, it is crucial to guarantee high-reaction Li ionic concentration, with which some sufficient reaction degrees can reach.
基金financial support provided by the National Natural Science Foundation of China(Grant Nos.51932003,51872115 and 51802110)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province,Program for the Development of Science and Technology of Jilin Province(20190201309JC)+3 种基金Jilin Province/Jilin University Co-Construction Project Funds for New Materials(SXGJSF2017-3,Branch-2/440050316A36)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2018WNLOKF022)Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities JLU,“Double-First Class”Discipline for Materials Science&Engineering。
文摘Increasing attention has been paid to rechargeable aqueous batteries due to their high safety and low cost.However,they remain in their infancy because of the limited choice of available anode materials with high specific capacity and satisfying cycling performance.Bi metal with layered structure can act as an ideal anode material with high capacity;however,the energy storage mechanism has not well elucidated.Herein,we demonstrate that Bi metal enables affording ultra-high specific capacity(254.3 mAh g^-1),superior rate capability and a capacity retention of 88.8%after 1600 cycles.Different from the previously-reported redox reaction mechanisms of Bi electrode,efficient(de)alloying of K+is responsible for its excellent performance.An excellent aqueous Bi battery is fabricated by matching Bi anode with Co(OH)2 cathode in KOH(1 M)electrolyte.Its outstanding performance is quite adequate and competitive for electrochemical energy storage devices.
基金financially supported by the the National Natural Science Foundation of China (Nos.21922308 and 51820105005)the National Key R&D Program of China (No.2017YFE0117800)+3 种基金the financial support from the BIODEST projectfunding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.778092The funding of MICINN (Spain) through grant PID2020-113045GB-C21 is gratefully acknowledgedthe Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.Y201908)
文摘The crystallization kinetics of semicrystalline polymers is often studied with isothermal experiments and analyzed by fitting the data with analytical expressions of the Avrami and Lauritzen and Hoffman(LH)theories.To correctly carry out the analysis,precautions in both experiments and data fitting should be taken.Here,we systematically discussed the factors that influence the validity of the crystallization kinetics study.The basic concepts and fundamentals of the Avrami and LH theories were introduced at first.Then,experimental protocols were discussed in detail.To clarify the impact of various experimental parameters,selected common polymers,i.e.,polypropylene and polylactide,were studied using various experimental techniques(i.e.,differential scanning calorimetry and polarized light optical microscopy).Common mistakes were simulated under conditions when non-ideal experimental parameters were applied.Furthermore,from a practical point of view,we show how to fit the experimental data to the Avrami and the LH theories,using an Origin■App developed by us.
文摘The primary objective of the paper is to forecast the beta values of companies listed on Sensex,Bombay Stock Exchange(BSE).The BSE Sensex constitutes 30 top most companies listed which are popularly known as blue-chip companies.To reach out the predefined objectives of the research,Auto Regressive Integrated Moving Average method is used to forecast the future risk and returns for 10 years of historical data from April 2007 to March 2017.Validation accomplished by comparison of forecasted and actual beta values for the hold back period of 2 years.Root-Mean-Square-Error and Mean-Absolute-Error both are used for accuracy measurement.The results revealed that out of 30 listed companies in the BSE Sensex,10 companies’exhibits high beta values,12 companies are with moderate and 8 companies are with low beta values.Further,it is to note that Housing Development Finance Corporation(HDFC)exhibits more inconsistency in terms of beta values though the average beta value is lowest among the companies under the study.A mixed trend is found in forecasted beta values of the BSE Sensex.In this analysis,all the p-values are less than the F-stat values except the case of Tata Steel and Wipro.Therefore,the null hypotheses were rejected leaving Tata Steel and Wipro.The values of actual and forecasted values are showing the almost same results with low error percentage.Therefore,it is concluded from the study that the estimation ARIMA could be acceptable,and forecasted beta values are accurate.So far,there are many studies on ARIMA model to forecast the returns of the stocks based on their historical data.But,hardly there are very few studies which attempt to forecast the returns on the basis of their beta values.Certainly,the attempt so made is a novel approach which has linked risk directly with return.On the basis of the present study,authors try to through light on investment decisions by linking it with beta values of respective stocks.Further,the outcomes of the present study undoubtedly useful to academicians,researchers,and policy makers in their respective area of studies.
基金Work supported by the Portuguese national funds(PIDDAC),through the Portuguese Foundation for Science and Technology(FCT)and FCT/MCTES:projects UID/FIS/04650/2020.UID/QUI/0686/2020,UID/CTM/50025/2020,UIDB/05549/2020,PTDC/FIS-MAC/28157/2017Grants SFRH/BD/140842/2018(J.C.B.),CEECIND/00833/2017(R.G.)and SFRH/BPD/112547/2015(C.M.C.).Financial support from the Basque Government Industry Departments under the ELKARTEK and HAZITEK programs is also acknowledged.
文摘The increased demand of electronic devices promotes the development of advanced and more efficient energy storage devices, such as batteries. Lithium-ion batteries (LIBs) are the most studied battery systems due to their high performance. Among the different battery components, the separator allows the control of lithium ion diffusion between the electrodes. To overcome some drawbacks of liquid electrolytes, including safety and environmental issues, solid polymer electrolytes (SPEs) are being developed. In this work, a UV photocurable polyurethane acrylate (PUA) resin has been blended with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) up to 30 wt% LiTFSI content to reach a maximum ionic conductivity of 0.0032 mS/cm at room temperature and 0.09 mS/cm at 100 ℃. Those values allowed applying the developed materials as photocurable SPE in Swagelok type Li/C-LiFePO_(4) half-cells, reaching a battery discharge capacity value of 139 mAh.g^(−1) at C/30 rate. Those results, together with the theoretical studies of the discharge capacity at different C-rates and temperatures for batteries with LiTFSI/PUA SPE demonstrate the suitability of the developed photocurable SPE for LIB applications.
文摘Diabetes mellitus is referred as common metabolic abnormalities characterized as hyperglycemia,mainly caused due to insufficient production of insulin at cellular level or/and defects in insulin action.Such an endocrine disorder is responsible for serious health problems and its worldwide prevalence is rapidly increasing.Common management of diabetes by oral administration of drugs without creating any side effects is still considered a challenging task and increasing cost of con-ventional medicine in developing countries is another matter of concern.To address these issues,traditional preparations of herbal plant extracts in the form of medicines already gained immense attention.Swertia chirayita is one among such plants which is known for its hypoglycemic potential.Numerous chemical constituents with promising pharmacological properties have been identified from such plant extracts but still,such compounds have not been well characterized,specifically against human application.Hence,more research efforts are necessitated to understand exact mechanism of such compounds and to develop overall safety of such plant formulations.Present review clearly represents antidiabetic properties of Swertia chirayita extract,strategies to be taken to strengthen its safety application on humans and biotechnological interventions that ensure conservation of such endangered species to promote its future application in modern medicine.
基金This research is supported by the National Natural Science Foundation of China (51932003,51872115)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province (20200801001GH)+5 种基金Program for the Development of Science and Technology of Jilin Province (20190201309JC)the Jilin Province/Jilin University Co-Construction Project-Funds for New Materials (SXGJSF2017-3,Branch-2/440050316A36)Project for Self-innovation Capability Construction of Jilin Province Development and Reform Commission (2021C026)the Open Project Program of Wuhan National Laboratory for Optoelectronics (2018WNLOKF022)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities JLU,and“Double-First Class”Discipline for Materials Science&Engineering.
文摘Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.
基金the National Key Research and Development Program of China(No.2022YFB3603300)。
文摘The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,transverse and longitudinal velocity distribution of the glasses with different compositions were studied.Furthermore,the influence of these factors on the width and thickness of the flexible glass plate was investigated.It is found that the internal and external heat exchange of glass has a dominant influence on the viscosity variation during the UTG forming process,which is inconsistent with the general viscosity-temperature dependence.The glass that first reaches the lower limit of forming viscosity can significantly resist the shrinking effect caused by surface tension,making the glass wider during the forming.If the original glass width remains unchanged,the glass thickness or feeding speed is reduced,wider and thinner flexible glasses can be produced.
基金This work is also supported by the Faculty of Computer Science and Information Technology,University of Malaya under Postgraduate Research Grant(PG035-2016A).
文摘In recent years,progressive developments have been observed in recent technologies and the production cost has been continuously decreasing.In such scenario,Internet of Things(IoT)network which is comprised of a set of Unmanned Aerial Vehicles(UAV),has received more attention from civilian tomilitary applications.But network security poses a serious challenge to UAV networks whereas the intrusion detection system(IDS)is found to be an effective process to secure the UAV networks.Classical IDSs are not adequate to handle the latest computer networks that possess maximumbandwidth and data traffic.In order to improve the detection performance and reduce the false alarms generated by IDS,several researchers have employed Machine Learning(ML)and Deep Learning(DL)algorithms to address the intrusion detection problem.In this view,the current research article presents a deep reinforcement learning technique,optimized by BlackWidow Optimization(DRL-BWO)algorithm,for UAV networks.In addition,DRL involves an improved reinforcement learning-based Deep Belief Network(DBN)for intrusion detection.For parameter optimization of DRL technique,BWO algorithm is applied.It helps in improving the intrusion detection performance of UAV networks.An extensive set of experimental analysis was performed to highlight the supremacy of the proposed model.From the simulation values,it is evident that the proposed method is appropriate as it attained high precision,recall,F-measure,and accuracy values such as 0.985,0.993,0.988,and 0.989 respectively.
基金the European Union (Graphene Flagship-Core 3, Grant number 881603) for the financial support of this workfunding by the Spanish Ministerio de Ciencia,Innovación y Universidades (MICINN),Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF) through project RTI2018-100832-B-I00financial support from Stand Up for Energy and the Swedish Energy Agency。
文摘Sodium-oxygen batteries(SOBs) have the potential to provide energy densities higher than the state-ofthe-art Li-ion batteries. However, controlling the formation of sodium superoxide(NaO_(2)) as the sole discharge product on the cathode side is crucial to achieve durable and efficient SOBs. In this work, the discharge efficiency of two graphene-based cathodes was evaluated and compared with that of a commercial gas diffusion layer. The discharge products formed at the surface of these cathodes in a glyme-based electrolyte were carefully studied using a range of characterization techniques. NaO_(2) was detected as the main discharge product regardless of the specific cathode material while small amounts of Na_(2)O_(2).2H_(2)O and carbonate-like side-products were detected by X-ray diffraction as well as by Raman and infrared spectroscopies. This work leverages the use of X-ray diffraction to determine the actual yield of NaO_(2)which is usually overlooked in this type of batteries. Thus, the proper quantification of the superoxide formed on the cathode surface is widely underestimated;even though is crucial for determining the efficiency of the battery while eliminating the parasitic chemistry in SOBs. Here, we develop an ex-situ analysis method to determine the amount of NaO_(2) generated upon discharge in SOBs by transmission X-ray diffraction and quantitative Rietveld analysis. This work unveils that the yield of NaO_(2) depends on the depth of discharge where high capacities lead to very low discharge efficiency, regardless of the used cathode. We anticipate that the methodology developed herein will provide a convenient diagnosis tool in future efforts to optimize the performance of the different cell components in SOBs.
文摘Type 2 diabetes patients often suffer from microvascular compli-cations of diabetes.These complications,in turn,often lead to vision impair-ment.Diabetic Retinopathy(DR)detection in its early stage can rescue people from long-term complications that could lead to permanent blindness.In this study,we propose a complex deep convolutional neural network architecture with an inception module for automated diagnosis of DR.The proposed novel Hybrid Inception U-Net(HIUNET)comprises various inception modules connected in the U-Net fashion using activation maximization and filter map to produce the image mask.First,inception blocks were used to enlarge the model’s width by substituting it with primary convolutional layers.Then,aggregation blocks were used to deepen the model to extract more compact and discriminating features.Finally,the downsampling blocks were adopted to reduce the feature map size to decrease the learning time,and the upsam-pling blocks were used to resize the feature maps.This methodology ensured high prominence to lesion regions compared to the non-lesion regions.The performance of the proposed model was assessed on two benchmark compet-itive datasets called Asia Pacific Tele-Ophthalmology Society(APTOS)and KAGGLE,attaining accuracy rates of 95%and 92%,respectively.
基金Support by the Jilin Province/Jilin University co-Construction Project-Funds for New Materials (SXGJSF2017-3, Branch-2/440050316A36)the National Key R&D Program of China (2016YFA0200400)+3 种基金the NSFC (51372095)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT)"Double-First Class" Discipline for Materials Science & Engineeringthe Special Funding for Academic Leaders~~
文摘Enabling the conversion of chemical energy of fuels directly into electricity without combustion,fuel cells are arousing great interest in both academia and industry.A typical case is the proton exchange membrane fuel cell(PEMFC),already commercialized by automobile giants.For mass popularization,however,three major criteria must be balanced:performance,durability and cost.The electrocatalysts used in both the anode and cathode are the kernel of PEMFCs,being essential for efficient operation.First in the firing‐line is the oxygen reduction reaction(ORR)at the cathode,which is normally very sluggish:over six orders of magnitude slower than the anode hydrogen oxidation reaction(HOR)[1].Thus,considerable efforts have been made to improve the cathode ORR.Identifying the main active sites is key to the design of optimum materials for enhanced ORR.Considering the complex balance of preparation,performance and cost,the active sites of metal‐nitrogen‐carbon(M‐N‐C)catalysts are particularly promising.Coupled with the single metal atom(SMA)catalysts[2–5],two excellent M‐N‐C catalysts were recently reported[6,7].New insights were thereby gained into the delicate architecture of carbon‐based SMA catalysts for ORR.