The paper summarizes the structure and water-absorbing mechanism,classification,and preparation method of polymer fire extinguishing gel,and prospects for its application in aerial firefighting,forest ground fire exti...The paper summarizes the structure and water-absorbing mechanism,classification,and preparation method of polymer fire extinguishing gel,and prospects for its application in aerial firefighting,forest ground fire extinguishing,opening of firebreaks,and mitigating human casualties in forest fire extinguishing.展开更多
Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first tim...Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first time studied the proportion of HW in the trunk and the distribution of carbon and extractives in sapwood(SW)and HW of 70–80 year old Pinus sylvestris L.trees under different growing conditions in the pine forests of North-West Russia.Method:We have examined the influence of conditions and tree position in stand(dominant,intermediate and suppressed trees)in the ecological series:blueberry pine forest(Blu)–lingonberry pine forest(Lin)–lichen pine forest(Lic).We have analyzed the influence of climate conditions in the biogeographical series of Lin:the middle taiga subzone–the northern taiga subzone–the transition area of the northern taiga subzone and tundra.Results:We found that the carbon concentration in HW was 1.6%–3.4%higher than in SW,and the difference depended on growing conditions.Carbon concentration in HW increased with a decrease in stand productivity(Blu-Lin-Lic).In medium-productive stands,the carbon concentration in SW was higher in intermediate and supressed trees compared to dominant trees.In the series from south to north,carbon concentration in HW increased by up to 2%,while in SW,it rose by 2.7%–3.8%.Conclusions:Our results once again emphasized the need for an empirical assessment of the accurate carbon content in aboveground wood biomass,including various forest growing conditions,to better understand the role of boreal forests in carbon storage.展开更多
Fine roots play a crucial role in the biogeochemical cycles of terrestrial ecosystems.Patterns of fine roots biomass formation for broad geographical areas are still unclear.We use published estimates of characteristi...Fine roots play a crucial role in the biogeochemical cycles of terrestrial ecosystems.Patterns of fine roots biomass formation for broad geographical areas are still unclear.We use published estimates of characteristics of European pine and spruce stands to determine their productivity and calculate the needle biomass.Then,the relationship between the fine-root:needle biomass ratio of European pine and spruce forests and the stand quality index,which is a proxy of soil fertility,was determined.We show that a rise in soil fertility is accompanied by a decrease in this ratio.Moving from the northern edge of the boreal zone southwards,with the related rise in air and soil temperatures,we see a decline in the mass ratio of fine roots and needle.The change in the fine-root:needle biomass ratio is controlled by the change in specific water uptake by roots,which is related to the osmotic pressure of the solution in the absorbing root's central vascular cylinder.The fine-root:needle ratio does not vary among stands of the same age if the stand quality index and the geographical latitude(a proxy of air and soil temperatures)are constant.These findings may be useful for further in-depth analysis of forest ecosystem functioning in Europe.展开更多
Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring.Specifically,shifts from productive closed-canopy feather moss forests to low-productivity open-cano...Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring.Specifically,shifts from productive closed-canopy feather moss forests to low-productivity open-canopy lichen(Cladonia spp.)woodlands have been observed in boreal forests of eastern Canada.It has been hypothesized that high severity of fires would be the cause of this change,but this is difficult to validate a posteriori on mature forest stands.Because charcoal properties are affected by fire severity,we have put forward the hypothesis that the amount and physicochemical properties of charcoal(C,N,H,O,ash,surface area)would be different and indicative of a greater fire severity for open-canopy forests compared to closed canopy ones.Our hypothesis was partly validated in that the amount of charcoal found on the ground of closed-canopy forests was greater than that of open-canopy forests.However,the physicochemical properties were not different,albeit a greater variability of charcoal properties for open canopy stands.These results do not allow us to fully validate or reject our hypothesis on the role of fire severity in the shift between open and closed canopy stands.However,they suggest that the variability in fire conditions as well as the amounts of charcoal produced are different between the two ecosystem types.Furthermore,considering the role that biochar may play in improving soil conditions and promoting vegetation restoration,our results suggest that charcoal may play a role in maintaining these two stable alternative ecosystem states.展开更多
Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tre...Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.展开更多
Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution an...Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.展开更多
Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mec...Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mechanistic risk models. This study demonstrated large-scale and high-resolution modelling of wind damage vulnerability in Norway. The hybrid mechanistic wind damage model, ForestGALES, was adapted to map the critical wind speeds(CWS) of damage across Norway using a national forest attribute map at a 16 m × 16 m spatial resolution. P arametrization of the model for the Norwegian context was done using the literature and the National Forest Inventory data. This new parametrization of the model for Norwegian forests yielded estimates of CWS significantly different from the default parametrization. Both parametrizations fell short of providing acceptable discrimination of the damaged area following the storm of November 19, 2021 in the central southern region of Norway when using unadjusted CWS. After adjusting the CWS and the storm wind speeds by a constant factor, the Norwegian parametrization provided acceptable discrimination and was thus defined as suitable to use in future studies, despite the lack of field-and laboratory experiments to directly derive parameters for Norwegian forests. The windstorm event used for model validation in this study highlighted the challenges of predicting wind damage to forests in landscapes with complex topography. Future studies should focus on further developing ForestGALES and new datasets describing extreme wind climates to better represent the wind and tree interactions in complex topography, and predict the level of risk in order to develop local climate-smart forest management strategies.展开更多
Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesti...Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesticides.In this study,the Mediterranean basin climate conditions are projected to harshen in the next decades,will increase vulnerability of tree species to pest invasions.Endophytic fungi were isolated from wood and leaves of Quercus pyr-enaica,Q.ilex and Q.suber and tested for virulence against adults of the mealworm beetle,Tenebrio molitor L.using a direct contact method.Only 3 of 111 sporulating isolates had entomopathogenic activity,all identified as Lecanicillium lecanii.The pathogenicity of L.lecanii on T.molitor resulted in a median lethal time(TL50)of 14-16 d.Compared with commercial products,L.lecanii caused faster insect death than the nematode Steinernema carpocapsae and nuclear polyhedrosis virus(no effect on T.molitor survival),and slower than Beauveria bassiana(TL50=5),Beauveria pseu-dobassiana(TL50=8d)and Bacillus thuriengensis(80%mortality first day after inoculation).Mortality was also accelerated under water stress,reducing TL50 by an addi-tional 33%.Remarkably,water stress alone had a comparable effect on mortality to that of L.lecanii isolates.This study confirms T.molitor as a good model insect for pathogenicity testing and agrees with management policies proposed in the EU Green Deal.展开更多
Ensuring food security for a rapidly growing global population amidst resource limitations and climate change is a major challenge.Agroforestry an ecologically sustainable land-use system that integrates trees,crops,a...Ensuring food security for a rapidly growing global population amidst resource limitations and climate change is a major challenge.Agroforestry an ecologically sustainable land-use system that integrates trees,crops,and sometimes livestock offers significant promise by enhancing biodiversity,ecosystem services,and agricultural productivity.A central concern in such systems is pest management,which traditionally relies on chemical pesticides.However,their excessive use has led to environmental degradation,pest resistance,and health hazards.This review explores the potential of insectivorous birds as natural pest control agents in agroforestry systems.It focuses on how habitat features,vegetation complexity,and species-specific behaviors influence bird-mediated biological control.Insectivorous birds manage pest populations through direct predation,targeting a range of insect pests including caterpillars,beetles,and grasshoppers.Their foraging activity helps maintain pest populations below the economic threshold.Vegetation strata comprising ground cover,shrubs,understory,and canopy offer diverse foraging niches and nesting habitats that enhance bird diversity and functional roles.Pest control efficiency is closely linked to seasonality,resource availability,and habitat structure.Differentiating between beneficial(predatory)and pestiferous birds is essential to maximize ecosystem services and minimize crop losses or damage to beneficial insects.Conservation of beneficial bird species,informed vegetation planning,and regular monitoring are vital to strengthening multitrophic interactions and achieving sustainable pest control.Future research should focus on bird behavior,predator-prey interactions,and habitat management to optimize bird-friendly pest regulation strategies in agroforestry landscapes.展开更多
Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety o...Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety of soils and at altitudes ranging from sea level to 2200 m,especially in Atlantic and sub-Mediterranean climates,and it is sensitive to low winter temperatures,early and late frosts,as well as high summer temperatures.Sessile oak forms both pure and mixed stands especially with broadleaves such as European beech,European hornbeam,small-leaved lime and Acer spp.These form the understorey of sessile oak stands,promoting the natural shedding of lower branches of the oak and protecting the trunk against epicormic branches.Sessile oak is a long-lived,light-demanding and wind-firm species,owing to its taproot and heart-shaped root system.Its timber,one of the most valuable in Europe,is important for fur-niture-making(both solid wood and veneer),construction,barrels,railway sleepers,and is also used as fuelwood.It is one of the few major tree species in Europe that is regener-ated by seed(naturally or artificially)and by stump shoots in high forest,coppice-with-standards and coppice forests.Sessile oak forests are treated in both regular and irregular systems involving silvicultural techniques such as uniform shelterwood,group shelterwood,irregular shelterwood,irregular high forest,coppice-with-standards and simple coppice.Young naturally regenerated stands are managed by weeding,release cutting and cleaning-respacing,keeping the stands quite dense for good natural pruning.Plantations are based on(1)2-4-year old bare-root or container-grown seedlings produced in nurseries using seeds from genetic resources,seed stands and seed orchards.The density of sessile oak plantations(mostly in rows,but also in clusters)is usually between 4000 and 6000 ind.ha^(−1).Sessile oak silviculture of mature stands includes crown thinning,focus-ing on final crop trees(usually a maximum of 100 ind.ha^(−1))and targeting the production of large-diameter and high quality trees at long rotation ages(mostly over 120 years,sometimes 250-300 years).In different parts of Europe,conversion of simple coppices and coppice-with-standards to high forests is continuing.Even though manage-ment of sessile oak forests is very intensive and expensive,requiring active human intervention,the importance of this species in future European forests will increase in the con-text of climate change due to its high resistance to distur-bance,superior drought tolerance and heat stress resistance.展开更多
Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these ...Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.展开更多
Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies ha...Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies have examined the role of canopy structural heterogeneity,which is a defining feature of forests,in shaping SGDCs.Here,we determine what factors contribute toα-andβ-species–genetic diversity correlations(i.e.,α-andβ-SGDCs)in a Chinese subtropical forest.For this purpose,we used neutral molecular markers to assess genetic variation in almost all adult individuals of the dominant tree species,Lithocarpus xylocarpus,across plots in the Ailaoshan National Natural Reserve.We also quantified microhabitat variation by quantifying canopy structure heterogeneity with airborne laser scanning on 201-ha subtropical forest plots.We found that speciesα-diversity was negatively correlated with geneticα-diversity.Canopy structural heterogeneity was positively correlated with speciesα-diversity but negatively correlated with geneticα-diversity.These contrasting effects contributed to the formation of a negativeα-SGDC.Further,we found that canopy structural heterogeneity increases speciesα-diversity and decreases geneticα-diversity by reducing the population size of target species.Speciesβ-diversity,in contrast,was positively correlated with geneticβ-diversity.Differences in canopy structural heterogeneity between plots had non-linear parallel effects on the two levels ofβ-diversity,while geographic distance had a relatively weak effect onβ-SGDC.Our study indicates that canopy structural heterogeneity simultaneously affects plot-level community species diversity and population genetic diversity,and species and genetic turnover across plots,thus drivingα-andβ-SGDCs.展开更多
The study determined the carbon stocks and litter nutrient concentration in tropical forests along the ecological gradient in Kenya.This could help understand the potential of mitigating climate change using tropical ...The study determined the carbon stocks and litter nutrient concentration in tropical forests along the ecological gradient in Kenya.This could help understand the potential of mitigating climate change using tropical forest ecosystems in different ecological zones,which are being affected by climate change to a level that they are becoming carbon sources instead of sinks.Stratified sampling technique was used to categorize tropical forests into rain,moist deciduous and dry zone forests depending on the average annual rainfall received.Simple random sampling technique was used to select three tropical forests in each category.Modified consistent sampling technique was used to develop 10 main 20 m×100 m plots in each forest,with 202 m×50 m sub-plots in each plot.Systematic random sampling technique was used in selecting 10 sub-plots from each main plot for inventory study.Non-destructive approach based on allometric equations using trees’diameter at breast height(DBH),total height and species’wood specific gravity were used in estimating tree carbon stock in each forest.Soil organic carbon(SOC)and litter nutrient concentration(total phosphorus and nitrogen)were determined in each forest based on standard laboratory procedures.The results indicated that,whilst trees in rain forests recorded a significantly higher(p<0.001)DBH(20.36 cm)and total tree height(12.1 m),trees in dry zone forests recorded a significantly higher(p<0.001)specific gravity(0.67 kg m^(−3)).Dry zone tropical forests stored a significantly lower amount of total tree carbon of 73 Mg ha^(−1),compared to tropical rain forests(439.5 Mg ha^(−1))and moist deciduous tropical forests(449 Mg ha^(−1)).The SOC content was significantly higher in tropical rainforests(3.9%),compared to soils from moist deciduous(2.9%)and dry zone forests(1.8%).While litter from tropical rain forests recorded a significantly higher amount of total nitrogen(3.4%),litter from dry zone forests recorded a significantly higher concentration of total phosphorus(0.27%).In conclusion,ecological gradient that is dictated by the prevailing temperatures and precipitation affects the tropical forests carbon stock potential and litter nutrient concentration.This implies that,the changing climate is having a serious implication on the ecosystem services such as carbon stock and nutrients cycling in tropical forests.展开更多
Photodegradation is considered as a universal contributing factor to litter decomposition and carbon(C)cycling within the Earth’s biomes.Identifying how solar radiation modifies the molecular structure of litter is e...Photodegradation is considered as a universal contributing factor to litter decomposition and carbon(C)cycling within the Earth’s biomes.Identifying how solar radiation modifies the molecular structure of litter is essen-tial to understand the mechanism controlling its decom-position and reaction to shifts in climatic conditions and land-use.In this study,we performed a spectral-attenuation experiment following litter decomposition in an understory and gap of a temperate deciduous forest.We found that short-wavelength visible light,especially blue light,was the main factor driving variation in litter molecular struc-ture of Fagus crenata Blume,Quercus crispula Blume,Acer carpinifolium Siebold&Zuccarini and Betula platyphylla Sukaczev,explaining respectively 56.5%,19.4%,66.3%,and 16.7%of variation in its chemical composition.However,the variation also depended on canopy openness:Only in the forest gap was lignin aromatic C negatively associated with C-oxygen(C–O)bonding in polysaccharides receiv-ing treatments containing blue light of the full spectrum of solar radiation.Regardless of species,the decomposition index of litter that explained changes in mass and lignin loss was driven by the relative content of C–O stretching in poly-saccharides and lignin aromatic C.The results suggest that the availability of readily degradable polysaccharides pro-duced by the reduction in lignin aromatic C most plausibly explains the rate of litter photodegradation.Photo-products of photodegradation might augment the C pool destabilized by the input of readily degradable organic compounds(i.e.,polysaccharides).展开更多
Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civili...Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civilian use,which was equipped with a two-line-array stereo mapping camera and a laser altimeter system that can provide stereo images and full waveform LiDAR data simultaneously.Most of the existing studies have concentrated on evaluating the accuracy of GF-7 for topographic survey in bare land,but few have in-depth studied its ability to measure forest terrain elevation and canopy height.The purpose of this study is to evaluate the potential of GF-7 LiDAR and stereo image for forest terrain and height measurement.The Airborne Laser Scanning(ALS)data were utilized to generate reference terrain and forest vertical information.The validation test was conducted in Pu’er City,Yunnan Province of China,and encouraging results have obtained.The GF-7 LiDAR data obtained the accuracy of forest terrain elevation with RMSE of 8.01 m when 21 available laser footprints were used for results verification;meanwhile,when it was used to calculate the forest height,R^(2)of 0.84 and RMSE of 3.2 m were obtained although only seven effective footprints were used for result verification.The canopy height values obtained from GF-7 stereo images have also been proven to have high accuracy with the resolution of 20 m×20 m compared with ALS data(R2=0.88,RMSE=2.98 m).When the results were verified at the forest sub-compartment scale that taking into account the forest types,further higher accuracy(R^(2)=0.96,RMSE=1.23 m)was obtained.These results show that GF-7 has considerable application potential in forest resources monitoring.展开更多
The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural par...The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.展开更多
Forests worldwide are experiencing increasingly intense biotic disturbances;however,assessing impacts of these disturbances is challenging due to the diverse range of organisms involved and the complex interactions am...Forests worldwide are experiencing increasingly intense biotic disturbances;however,assessing impacts of these disturbances is challenging due to the diverse range of organisms involved and the complex interactions among them.This particularly applies to invasive species,which can greatly alter ecological processes in their invaded territories.Here we focus on the pine wood nematode(PWN,Bursaphelenchus xylophilus),an invasive pathogen that has caused extensive mortality of pines in East Asia and more recently has invaded southern Europe.It is expected to expand its range into continental Europe with heavy impacts possible.Given the unknown dynamics of PWN in continental Europe,we reviewed laboratory and field experiments conducted in Asia and southern Europe to parameterize the main components of PWN biology and host-pathogen interactions in the Biotic Disturbance Engine(BITE),a model designed to implement a variety of forest biotic agents,from fungi to large herbivores.To simulate dynamically changing host availability and conditions,BITE was coupled with the forest landscape model iLand.The potential impacts of introducing PWN were assessed in a Central European forest landscape(40,928ha),likely within PWN’s reach in future decades.A parameter sensitivity analysis indicated a substantial influence of factors related to dispersal,colonization,and vegetation impact,whereas parameters related to population growth manifested a minor effect.Selection of different assumptions about biological processes resulted in differential timing and size of the main mortality wave,eliminating 40%–95%of pine trees within 100 years post-introduction,with a maximum annual carbon loss between 1.3%and 4.2%.PWN-induced tree mortality reduced the Gross Primary Productivity,increased heterotrophic respiration,and generated a distinct legacy sink effect in the recovery period.This assessment has corroborated the ecological plausibility of the simulated dynamics and highlighted the need for new strategies to navigate the substantial uncertainty in the agent’s biology and population dynamics.展开更多
We carried out this research at Abu-Gaddaf Natural Forest Reserve (ANFR) which is located east of Blue Nile River, in Blue Nile State, Sudan. It aims at exploring tree composition assessing their diversity indices, an...We carried out this research at Abu-Gaddaf Natural Forest Reserve (ANFR) which is located east of Blue Nile River, in Blue Nile State, Sudan. It aims at exploring tree composition assessing their diversity indices, and ecological importance values. For survey of types and estimation of density of tree species in the forest, we randomly distributed 97 circular sample plots (0.1 hectare (ha)). In each sample plot we identified all trees to the species level, recorded their frequencies and computed species diversity and importance value indices (IVI). A total of 13 tree species, which belong to 12 genera and nine families, were identified in the tree layer of the forest. Mean tree density in ANFR was 116 trees/ha, composed mainly of Boswellia papyrifera (Del.) Hochst. (48), followed by Combretum hartmannianu (19) and Lannea fruticosa (18). Fabaceae was the most common family followed by Combretaceae and Malvaceae. B. papyrifera Delile Hochst was the most abundant while Acacia seyal was the least abundant species. Species richness (R = 1.71), evenness (E = 0.69), dominance (0.24) indices and Simpson’s Index of Diversity (D' = 0.76) suggest a moderate diversity, moderate numbers of individuals in each species and a moderate community stability. The research provides empirical results on diversity and ecological importance value of species, signifies the urging need to safeguard threatened species and to prioritize them for conservation, as well as the need to promote management of abundant species to provide multiple forest ecosystem services.展开更多
Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succes...Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge.展开更多
基金Central Finance Forestry Science and Technology Promotion Demonstration Project(H[2023]TG31).
文摘The paper summarizes the structure and water-absorbing mechanism,classification,and preparation method of polymer fire extinguishing gel,and prospects for its application in aerial firefighting,forest ground fire extinguishing,opening of firebreaks,and mitigating human casualties in forest fire extinguishing.
基金carried out within the framework of the most important innovative project of state importance“Development of a system of ground-based and remote monitoring of carbon pools and greenhouse gas fluxes on the territory of the Russian Federation,…”(No.123030300031-6)in the northern taiga subzone and on the border of tundra and taiga under the state assignment of the Forest Institute of the Karelian Research Center of the Russian Academy of Sciences(FMEN-2021-0018)with the partial financial support from RSF(grant no.21-14-00204)。
文摘Background:The heartwood(HW)proportion in the trunk of mature trees is an important characteristic not only for wood quality but also for assessing the role of forests in carbon sequestration.We have for the first time studied the proportion of HW in the trunk and the distribution of carbon and extractives in sapwood(SW)and HW of 70–80 year old Pinus sylvestris L.trees under different growing conditions in the pine forests of North-West Russia.Method:We have examined the influence of conditions and tree position in stand(dominant,intermediate and suppressed trees)in the ecological series:blueberry pine forest(Blu)–lingonberry pine forest(Lin)–lichen pine forest(Lic).We have analyzed the influence of climate conditions in the biogeographical series of Lin:the middle taiga subzone–the northern taiga subzone–the transition area of the northern taiga subzone and tundra.Results:We found that the carbon concentration in HW was 1.6%–3.4%higher than in SW,and the difference depended on growing conditions.Carbon concentration in HW increased with a decrease in stand productivity(Blu-Lin-Lic).In medium-productive stands,the carbon concentration in SW was higher in intermediate and supressed trees compared to dominant trees.In the series from south to north,carbon concentration in HW increased by up to 2%,while in SW,it rose by 2.7%–3.8%.Conclusions:Our results once again emphasized the need for an empirical assessment of the accurate carbon content in aboveground wood biomass,including various forest growing conditions,to better understand the role of boreal forests in carbon storage.
基金funded by state order to the Karelian Research Centre of the Russian Academy of Sciences(Forest Research Institute of KarRC RAS)。
文摘Fine roots play a crucial role in the biogeochemical cycles of terrestrial ecosystems.Patterns of fine roots biomass formation for broad geographical areas are still unclear.We use published estimates of characteristics of European pine and spruce stands to determine their productivity and calculate the needle biomass.Then,the relationship between the fine-root:needle biomass ratio of European pine and spruce forests and the stand quality index,which is a proxy of soil fertility,was determined.We show that a rise in soil fertility is accompanied by a decrease in this ratio.Moving from the northern edge of the boreal zone southwards,with the related rise in air and soil temperatures,we see a decline in the mass ratio of fine roots and needle.The change in the fine-root:needle biomass ratio is controlled by the change in specific water uptake by roots,which is related to the osmotic pressure of the solution in the absorbing root's central vascular cylinder.The fine-root:needle ratio does not vary among stands of the same age if the stand quality index and the geographical latitude(a proxy of air and soil temperatures)are constant.These findings may be useful for further in-depth analysis of forest ecosystem functioning in Europe.
基金supported by the MITACS Accelerate grant with Greenfirst,industry partner in La Sarre,QC,Canada.
文摘Fire disturbances are increasing under global climate change and ecological transformations of forests are occurring.Specifically,shifts from productive closed-canopy feather moss forests to low-productivity open-canopy lichen(Cladonia spp.)woodlands have been observed in boreal forests of eastern Canada.It has been hypothesized that high severity of fires would be the cause of this change,but this is difficult to validate a posteriori on mature forest stands.Because charcoal properties are affected by fire severity,we have put forward the hypothesis that the amount and physicochemical properties of charcoal(C,N,H,O,ash,surface area)would be different and indicative of a greater fire severity for open-canopy forests compared to closed canopy ones.Our hypothesis was partly validated in that the amount of charcoal found on the ground of closed-canopy forests was greater than that of open-canopy forests.However,the physicochemical properties were not different,albeit a greater variability of charcoal properties for open canopy stands.These results do not allow us to fully validate or reject our hypothesis on the role of fire severity in the shift between open and closed canopy stands.However,they suggest that the variability in fire conditions as well as the amounts of charcoal produced are different between the two ecosystem types.Furthermore,considering the role that biochar may play in improving soil conditions and promoting vegetation restoration,our results suggest that charcoal may play a role in maintaining these two stable alternative ecosystem states.
基金supported in part by the intramural research program of the US Department of Agriculture,National Institute of Food and Agriculture,Evans-Allen#1024525,and Capacity Building Grant#006531supported in part by the US National Science Foundation RII Track 2 FEC:Leveraging Intelligent Informatics and Smart Data for Improved Understanding of Northern Forest Ecosystem Resiliency(INSPIRES)#1920908by The Lyndhurst Foundation.
文摘Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.
基金financial support provided by the German Research Foundation,DFG,through grant number KL894/23-2 and NO 1444/1-2 as part of the Research Unit FOR2432/2the China Scholarship Council(CSC)that supports the first author with a Ph D scholarshipsupport provided by Indian partners at the Institute of Wood Science and Technology(IWST),Bengaluru。
文摘Rapid urbanization has caused significant changes along the urban-rural gradient,leading to a variety of landscapes that are mainly shaped by human activities.This dynamic interplay also influences the distribution and characteristics of trees outside forests(TOF).Understanding the pattern of these trees will support informed decision-making in urban planning,in conservation strategies,and altogether in sustainable land management practices in the urban context.In this study,we employed a deep learning-based object detection model and high resolution satellite imagery to identify 1.3 million trees with bounding boxes within a 250 km^(2)research transect spanning the urban-rural gradient of Bengaluru,a megacity in Southern India.Additionally,we developed an allometric equation to estimate diameter at breast height(DBH)from the tree crown diameter(CD)derived from the detected bounding boxes.Our study focused on analyzing variations in tree density and tree size along this gradient.The findings revealed distinct patterns:the urban domain displayed larger tree crown diameters(mean:8.87 m)and DBH(mean:43.78 cm)but having relatively low tree density(32 trees per hectare).Furthermore,with increasing distance from the city center,tree density increased,while the mean tree crown diameter and mean tree basal area decreased,showing clear differences of tree density and size between the urban and rural domains in Bengaluru.This study offers an efficient methodology that helps generating instructive insights into the dynamics of TOF along the urban-rural gradient.This may inform urban planning and management strategies for enhancing green infrastructure and biodiversity conservation in rapidly urbanizing cities like Bengaluru.
基金funded by the Norwegian Research Council(NFR project 302701 Climate Smart Forestry Norway).
文摘Assessing forest vulnerability to disturbances at a high spatial resolution and for regional and national scales has become attainable with the combination of remote sensing-derived high-resolution forest maps and mechanistic risk models. This study demonstrated large-scale and high-resolution modelling of wind damage vulnerability in Norway. The hybrid mechanistic wind damage model, ForestGALES, was adapted to map the critical wind speeds(CWS) of damage across Norway using a national forest attribute map at a 16 m × 16 m spatial resolution. P arametrization of the model for the Norwegian context was done using the literature and the National Forest Inventory data. This new parametrization of the model for Norwegian forests yielded estimates of CWS significantly different from the default parametrization. Both parametrizations fell short of providing acceptable discrimination of the damaged area following the storm of November 19, 2021 in the central southern region of Norway when using unadjusted CWS. After adjusting the CWS and the storm wind speeds by a constant factor, the Norwegian parametrization provided acceptable discrimination and was thus defined as suitable to use in future studies, despite the lack of field-and laboratory experiments to directly derive parameters for Norwegian forests. The windstorm event used for model validation in this study highlighted the challenges of predicting wind damage to forests in landscapes with complex topography. Future studies should focus on further developing ForestGALES and new datasets describing extreme wind climates to better represent the wind and tree interactions in complex topography, and predict the level of risk in order to develop local climate-smart forest management strategies.
基金supported by LIFE project MYCORESTORE“Innovative use of mycological resources for resilient and productive Mediterranean forests threatened by climate change,LIFE18 CCA/ES/001110”projects VA178P23 and VA208P20 funded by JCYL(Spain),both co-financed by FEDER(UE)budget.
文摘Tree endophytic fungi play an important role in reducing insect herbivory,either by repelling them or kill-ing them directly.Identifying which fungi show such activ-ity could lead to new environmentally friendly pesticides.In this study,the Mediterranean basin climate conditions are projected to harshen in the next decades,will increase vulnerability of tree species to pest invasions.Endophytic fungi were isolated from wood and leaves of Quercus pyr-enaica,Q.ilex and Q.suber and tested for virulence against adults of the mealworm beetle,Tenebrio molitor L.using a direct contact method.Only 3 of 111 sporulating isolates had entomopathogenic activity,all identified as Lecanicillium lecanii.The pathogenicity of L.lecanii on T.molitor resulted in a median lethal time(TL50)of 14-16 d.Compared with commercial products,L.lecanii caused faster insect death than the nematode Steinernema carpocapsae and nuclear polyhedrosis virus(no effect on T.molitor survival),and slower than Beauveria bassiana(TL50=5),Beauveria pseu-dobassiana(TL50=8d)and Bacillus thuriengensis(80%mortality first day after inoculation).Mortality was also accelerated under water stress,reducing TL50 by an addi-tional 33%.Remarkably,water stress alone had a comparable effect on mortality to that of L.lecanii isolates.This study confirms T.molitor as a good model insect for pathogenicity testing and agrees with management policies proposed in the EU Green Deal.
文摘Ensuring food security for a rapidly growing global population amidst resource limitations and climate change is a major challenge.Agroforestry an ecologically sustainable land-use system that integrates trees,crops,and sometimes livestock offers significant promise by enhancing biodiversity,ecosystem services,and agricultural productivity.A central concern in such systems is pest management,which traditionally relies on chemical pesticides.However,their excessive use has led to environmental degradation,pest resistance,and health hazards.This review explores the potential of insectivorous birds as natural pest control agents in agroforestry systems.It focuses on how habitat features,vegetation complexity,and species-specific behaviors influence bird-mediated biological control.Insectivorous birds manage pest populations through direct predation,targeting a range of insect pests including caterpillars,beetles,and grasshoppers.Their foraging activity helps maintain pest populations below the economic threshold.Vegetation strata comprising ground cover,shrubs,understory,and canopy offer diverse foraging niches and nesting habitats that enhance bird diversity and functional roles.Pest control efficiency is closely linked to seasonality,resource availability,and habitat structure.Differentiating between beneficial(predatory)and pestiferous birds is essential to maximize ecosystem services and minimize crop losses or damage to beneficial insects.Conservation of beneficial bird species,informed vegetation planning,and regular monitoring are vital to strengthening multitrophic interactions and achieving sustainable pest control.Future research should focus on bird behavior,predator-prey interactions,and habitat management to optimize bird-friendly pest regulation strategies in agroforestry landscapes.
文摘Sessile oak(Quercus petraea(Matt.)Liebl.)is widely distributed across most of Europe particularly the hills and lower mountain ranges,so is considered“the oak of the mountains”.This species grows on a wide variety of soils and at altitudes ranging from sea level to 2200 m,especially in Atlantic and sub-Mediterranean climates,and it is sensitive to low winter temperatures,early and late frosts,as well as high summer temperatures.Sessile oak forms both pure and mixed stands especially with broadleaves such as European beech,European hornbeam,small-leaved lime and Acer spp.These form the understorey of sessile oak stands,promoting the natural shedding of lower branches of the oak and protecting the trunk against epicormic branches.Sessile oak is a long-lived,light-demanding and wind-firm species,owing to its taproot and heart-shaped root system.Its timber,one of the most valuable in Europe,is important for fur-niture-making(both solid wood and veneer),construction,barrels,railway sleepers,and is also used as fuelwood.It is one of the few major tree species in Europe that is regener-ated by seed(naturally or artificially)and by stump shoots in high forest,coppice-with-standards and coppice forests.Sessile oak forests are treated in both regular and irregular systems involving silvicultural techniques such as uniform shelterwood,group shelterwood,irregular shelterwood,irregular high forest,coppice-with-standards and simple coppice.Young naturally regenerated stands are managed by weeding,release cutting and cleaning-respacing,keeping the stands quite dense for good natural pruning.Plantations are based on(1)2-4-year old bare-root or container-grown seedlings produced in nurseries using seeds from genetic resources,seed stands and seed orchards.The density of sessile oak plantations(mostly in rows,but also in clusters)is usually between 4000 and 6000 ind.ha^(−1).Sessile oak silviculture of mature stands includes crown thinning,focus-ing on final crop trees(usually a maximum of 100 ind.ha^(−1))and targeting the production of large-diameter and high quality trees at long rotation ages(mostly over 120 years,sometimes 250-300 years).In different parts of Europe,conversion of simple coppices and coppice-with-standards to high forests is continuing.Even though manage-ment of sessile oak forests is very intensive and expensive,requiring active human intervention,the importance of this species in future European forests will increase in the con-text of climate change due to its high resistance to distur-bance,superior drought tolerance and heat stress resistance.
基金supported by the Forest Research Centre,a research unit funded by Fundacao para a Ciencia e a Tecnologia I.P.(FCT),Portugal(UIDB/00239/2020)the Associated Laboratory TERRA(LA/P/0092/2020)+4 种基金Additional funding was provided through the Ph.D.grant awarded to Dagm Abate(UI/BD/151525/2021)by two key projects:H2020-MSCA-RISE-2020/101007950,titled“DecisionES-Decision Support for the Supply of Ecosystem Services under Global Change,”funded by the Marie Curie International Staff Exchange Scheme,H2020-LCGD-2020-3/101037419,titled“FIRE-RES-Innovative technologies and socio-ecological economic solutions for fireresilient territories in Europe,”funded by the EU Horizon 2020—Research and Innovation Framework Programmesupported by a project MODFIRE—a multiple criteria approach to integrate wildfire behavior in forest management planning with reference PCIF/MOS/0217/2017a contract from Dr.Susete Marques in the scope of Norma Transitoria—DL57/2016/CP1382/CT15a grant from Fundacao para a Ciencia e a Tecnologia(FCT),Portugal to Dr.Guerra-Hernandez(CEECIND/02576/2022).
文摘Cultural ecosystem services(CES),which encompass recreational and aesthetic values,contribute to human wellbeing and yet are often underrepresented in forest management planning due to challenges in quantifying these services.This study introduces the Recreational and Aesthetic Values of Forested Landscapes(RAFL)index,a novel framework combining six measurable recreational and aesthetic components:Stewardship,Naturalness,Complexity,Visual Scale,Historicity,and Ephemera.The RAFL index was integrated into a Linear Programming(LP)Resource Capability Model(RCM)to assess trade-offs between CES and other ecosystem services,including timber production,wildfire resistance,and biodiversity.The approach was applied in a case study in Northern Portugal,comparing two forest management scenarios:Business as Usual(BAU),dominated by eucalyptus plantations,and an Alternative Scenario(ALT),focused on the conversion to native species:cork oak,chestnut,and pedunculate oak.Results revealed that the ALT scenario consistently achieved higher RAFL values,reflecting its potential to enhance CES,while also supporting higher biodiversity and wildfire resilience compared to the BAU scenario.Results highlighted further that management may maintain steady timber production and wildfire regulatory services while addressing concerns with CES.This study provides a replicable methodology for quantifying CES and integrating them into forest management frameworks,offering actionable insights for decision-makers.The findings highlight the effectiveness of the approach in designing landscape mosaics that provide CES while addressing the need to supply provisioning and regulatory ecosystem services.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000)the Joint Fund of the National Natural Science Foundation of China-Yunnan Province (U1902203)+1 种基金Major Program for Basic Research Project of Yunnan Province (202101BC070002)Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (151C53KYSB20200019)
文摘Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies have examined the role of canopy structural heterogeneity,which is a defining feature of forests,in shaping SGDCs.Here,we determine what factors contribute toα-andβ-species–genetic diversity correlations(i.e.,α-andβ-SGDCs)in a Chinese subtropical forest.For this purpose,we used neutral molecular markers to assess genetic variation in almost all adult individuals of the dominant tree species,Lithocarpus xylocarpus,across plots in the Ailaoshan National Natural Reserve.We also quantified microhabitat variation by quantifying canopy structure heterogeneity with airborne laser scanning on 201-ha subtropical forest plots.We found that speciesα-diversity was negatively correlated with geneticα-diversity.Canopy structural heterogeneity was positively correlated with speciesα-diversity but negatively correlated with geneticα-diversity.These contrasting effects contributed to the formation of a negativeα-SGDC.Further,we found that canopy structural heterogeneity increases speciesα-diversity and decreases geneticα-diversity by reducing the population size of target species.Speciesβ-diversity,in contrast,was positively correlated with geneticβ-diversity.Differences in canopy structural heterogeneity between plots had non-linear parallel effects on the two levels ofβ-diversity,while geographic distance had a relatively weak effect onβ-SGDC.Our study indicates that canopy structural heterogeneity simultaneously affects plot-level community species diversity and population genetic diversity,and species and genetic turnover across plots,thus drivingα-andβ-SGDCs.
基金funded by the Kenya National Research Fund(NRF-Kenya,2018).
文摘The study determined the carbon stocks and litter nutrient concentration in tropical forests along the ecological gradient in Kenya.This could help understand the potential of mitigating climate change using tropical forest ecosystems in different ecological zones,which are being affected by climate change to a level that they are becoming carbon sources instead of sinks.Stratified sampling technique was used to categorize tropical forests into rain,moist deciduous and dry zone forests depending on the average annual rainfall received.Simple random sampling technique was used to select three tropical forests in each category.Modified consistent sampling technique was used to develop 10 main 20 m×100 m plots in each forest,with 202 m×50 m sub-plots in each plot.Systematic random sampling technique was used in selecting 10 sub-plots from each main plot for inventory study.Non-destructive approach based on allometric equations using trees’diameter at breast height(DBH),total height and species’wood specific gravity were used in estimating tree carbon stock in each forest.Soil organic carbon(SOC)and litter nutrient concentration(total phosphorus and nitrogen)were determined in each forest based on standard laboratory procedures.The results indicated that,whilst trees in rain forests recorded a significantly higher(p<0.001)DBH(20.36 cm)and total tree height(12.1 m),trees in dry zone forests recorded a significantly higher(p<0.001)specific gravity(0.67 kg m^(−3)).Dry zone tropical forests stored a significantly lower amount of total tree carbon of 73 Mg ha^(−1),compared to tropical rain forests(439.5 Mg ha^(−1))and moist deciduous tropical forests(449 Mg ha^(−1)).The SOC content was significantly higher in tropical rainforests(3.9%),compared to soils from moist deciduous(2.9%)and dry zone forests(1.8%).While litter from tropical rain forests recorded a significantly higher amount of total nitrogen(3.4%),litter from dry zone forests recorded a significantly higher concentration of total phosphorus(0.27%).In conclusion,ecological gradient that is dictated by the prevailing temperatures and precipitation affects the tropical forests carbon stock potential and litter nutrient concentration.This implies that,the changing climate is having a serious implication on the ecosystem services such as carbon stock and nutrients cycling in tropical forests.
基金supported by the National Natural Science Foundation of China (32122059)the National Key R&D Program of China(2021YFD2200402)+5 种基金the Chinese Academy of Sciences Young Talents Programthe LiaoNing Revitalization Talents Program (XLYC2007016) to QWW2024 Joint Fund Project Funding Program (2023-MSBA-137) to JJDChinese Academy of Sciences President's International Fellowship Initiative (2022VCA0010)the Japan Society for the Promotion of Science (KAKENHI,17F17403) to QWW and HKAcademy of Finland Project(324555) to TMR
文摘Photodegradation is considered as a universal contributing factor to litter decomposition and carbon(C)cycling within the Earth’s biomes.Identifying how solar radiation modifies the molecular structure of litter is essen-tial to understand the mechanism controlling its decom-position and reaction to shifts in climatic conditions and land-use.In this study,we performed a spectral-attenuation experiment following litter decomposition in an understory and gap of a temperate deciduous forest.We found that short-wavelength visible light,especially blue light,was the main factor driving variation in litter molecular struc-ture of Fagus crenata Blume,Quercus crispula Blume,Acer carpinifolium Siebold&Zuccarini and Betula platyphylla Sukaczev,explaining respectively 56.5%,19.4%,66.3%,and 16.7%of variation in its chemical composition.However,the variation also depended on canopy openness:Only in the forest gap was lignin aromatic C negatively associated with C-oxygen(C–O)bonding in polysaccharides receiv-ing treatments containing blue light of the full spectrum of solar radiation.Regardless of species,the decomposition index of litter that explained changes in mass and lignin loss was driven by the relative content of C–O stretching in poly-saccharides and lignin aromatic C.The results suggest that the availability of readily degradable polysaccharides pro-duced by the reduction in lignin aromatic C most plausibly explains the rate of litter photodegradation.Photo-products of photodegradation might augment the C pool destabilized by the input of readily degradable organic compounds(i.e.,polysaccharides).
基金supported by the National Key Research and Development Program of China[grant numbers 2021YFE0117700 and 2022YFF1302100]the ESA-MOST China Dragon 5 Cooperation[grant number 59313]National Science and Technology Major Project of China's High Resolution Earth Observation System[grant numbers 30-Y30A02-9001-20/22-7 and 21-Y20B01-9001-19/22].
文摘Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civilian use,which was equipped with a two-line-array stereo mapping camera and a laser altimeter system that can provide stereo images and full waveform LiDAR data simultaneously.Most of the existing studies have concentrated on evaluating the accuracy of GF-7 for topographic survey in bare land,but few have in-depth studied its ability to measure forest terrain elevation and canopy height.The purpose of this study is to evaluate the potential of GF-7 LiDAR and stereo image for forest terrain and height measurement.The Airborne Laser Scanning(ALS)data were utilized to generate reference terrain and forest vertical information.The validation test was conducted in Pu’er City,Yunnan Province of China,and encouraging results have obtained.The GF-7 LiDAR data obtained the accuracy of forest terrain elevation with RMSE of 8.01 m when 21 available laser footprints were used for results verification;meanwhile,when it was used to calculate the forest height,R^(2)of 0.84 and RMSE of 3.2 m were obtained although only seven effective footprints were used for result verification.The canopy height values obtained from GF-7 stereo images have also been proven to have high accuracy with the resolution of 20 m×20 m compared with ALS data(R2=0.88,RMSE=2.98 m).When the results were verified at the forest sub-compartment scale that taking into account the forest types,further higher accuracy(R^(2)=0.96,RMSE=1.23 m)was obtained.These results show that GF-7 has considerable application potential in forest resources monitoring.
文摘The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.
基金supported by the project“EVA4.0”,No.CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE of the Czech Republicthe H2020 project RESONATE under grant agreement No.101000574.
文摘Forests worldwide are experiencing increasingly intense biotic disturbances;however,assessing impacts of these disturbances is challenging due to the diverse range of organisms involved and the complex interactions among them.This particularly applies to invasive species,which can greatly alter ecological processes in their invaded territories.Here we focus on the pine wood nematode(PWN,Bursaphelenchus xylophilus),an invasive pathogen that has caused extensive mortality of pines in East Asia and more recently has invaded southern Europe.It is expected to expand its range into continental Europe with heavy impacts possible.Given the unknown dynamics of PWN in continental Europe,we reviewed laboratory and field experiments conducted in Asia and southern Europe to parameterize the main components of PWN biology and host-pathogen interactions in the Biotic Disturbance Engine(BITE),a model designed to implement a variety of forest biotic agents,from fungi to large herbivores.To simulate dynamically changing host availability and conditions,BITE was coupled with the forest landscape model iLand.The potential impacts of introducing PWN were assessed in a Central European forest landscape(40,928ha),likely within PWN’s reach in future decades.A parameter sensitivity analysis indicated a substantial influence of factors related to dispersal,colonization,and vegetation impact,whereas parameters related to population growth manifested a minor effect.Selection of different assumptions about biological processes resulted in differential timing and size of the main mortality wave,eliminating 40%–95%of pine trees within 100 years post-introduction,with a maximum annual carbon loss between 1.3%and 4.2%.PWN-induced tree mortality reduced the Gross Primary Productivity,increased heterotrophic respiration,and generated a distinct legacy sink effect in the recovery period.This assessment has corroborated the ecological plausibility of the simulated dynamics and highlighted the need for new strategies to navigate the substantial uncertainty in the agent’s biology and population dynamics.
文摘We carried out this research at Abu-Gaddaf Natural Forest Reserve (ANFR) which is located east of Blue Nile River, in Blue Nile State, Sudan. It aims at exploring tree composition assessing their diversity indices, and ecological importance values. For survey of types and estimation of density of tree species in the forest, we randomly distributed 97 circular sample plots (0.1 hectare (ha)). In each sample plot we identified all trees to the species level, recorded their frequencies and computed species diversity and importance value indices (IVI). A total of 13 tree species, which belong to 12 genera and nine families, were identified in the tree layer of the forest. Mean tree density in ANFR was 116 trees/ha, composed mainly of Boswellia papyrifera (Del.) Hochst. (48), followed by Combretum hartmannianu (19) and Lannea fruticosa (18). Fabaceae was the most common family followed by Combretaceae and Malvaceae. B. papyrifera Delile Hochst was the most abundant while Acacia seyal was the least abundant species. Species richness (R = 1.71), evenness (E = 0.69), dominance (0.24) indices and Simpson’s Index of Diversity (D' = 0.76) suggest a moderate diversity, moderate numbers of individuals in each species and a moderate community stability. The research provides empirical results on diversity and ecological importance value of species, signifies the urging need to safeguard threatened species and to prioritize them for conservation, as well as the need to promote management of abundant species to provide multiple forest ecosystem services.
基金the financial support from the National Natural Science Foundation of China(Nos.32001139,32071554)。
文摘Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge.