Neighborhood competition is a critical driver of individual tree growth,and aboveground biomass(AGB)accumulation,which together play key roles in forest dynamics and carbon storage.Therefore,accurate biomass estimatio...Neighborhood competition is a critical driver of individual tree growth,and aboveground biomass(AGB)accumulation,which together play key roles in forest dynamics and carbon storage.Therefore,accurate biomass estimation is essential for understanding ecosystem functioning and informing forest management strategies to mitigate climate change.However,integrating neighborhood competition into biomass estimation models,particularly for young mixed forest stands,remains unexplored.In this study,we examined how incorporating neighborhood competition improves biomass prediction accuracy and how the influence of neighborhood competition differs between Scots pine(Pinus sylvestris L.)and Pyrenean oak(Quercus pyrenaica Willd.),as well as the relative contributions of intra-and interspecific competition to AGB.Our findings revealed that including neighborhood competition alongside tree size variables(DBH and total tree height)significantly improved the predictive accuracy of AGB models for Scots pine.This addition reduced the root mean square error(RMSE)by 14% and improved the model efficiency factor(MEF)by 15%.Furthermore,intraspecific competition in Scots pine slightly reduced AGB,whereas interspecific competition had a significant negative effect on AGB.In contrast,DBH alone was the best predictor of AGB for Pyrenean oak,as neighborhood competition did not improve model performance.Also,intra-and interspecific competition in Pyrenean oak had positive but nonsignificant effects on AGB.These findings highlight the important role of competition in biomass models and suggest species-specific approaches in competition dynamics to inform sustainable forest management and climate change adaptation strategies.展开更多
The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inp...The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inputs as well as pollution and soil compaction. Especially, global warming can amplify the negative effects of urban microclimates on tree growth, health and well-being of citizens. To quantify the growth of urban trees influenced by the urban climate, ten urban tree species in four climate zones were assessed in an overarching worldwide dendrochronological study. The focus of this analysis was the species water oak (Quercus nigra L.) in Houston, Texas, USA. Similar to the overall growth trend, we found in urban trees, water oaks displayed an accelerated growth during the last decades. Moreover, water oaks in the city center grew better than the water oaks growing in the rural surroundings of Houston, though this trend was reversed with high age. Growth habitat (urban, suburban, rural and forest) significantly affected tree growth (p < 0.001) with urban trees growing faster than rural growing trees and forest trees, though a younger age of urban trees might influence the found growth patterns. Growing site in terms of cardinal direction did not markedly influence tree growth, which was more influenced by the prevalent climatic conditions of Houston and the urban climate. Higher temperatures, an extended growing season and eutrophication can cause an accelerated growth of trees in urban regions across, across all climatic zones. However, an accelerated growth rate can have negative consequences like quicker ageing and tree death resulting in higher costs for new plantings and tree management as well as the decrease in ecosystem services due to a lack of old trees providing greatest benefits for mitigating the negative effects of the urban climate.展开更多
Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required abo...Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.展开更多
Background: Recent projections expect that Vietnam will be affected most severely by climate change with higher temperatures, more precipitation and rising sea levels. Especially increased temperatures will worsen the...Background: Recent projections expect that Vietnam will be affected most severely by climate change with higher temperatures, more precipitation and rising sea levels. Especially increased temperatures will worsen the situations in cities, amplifying the urban heat island effect. Green infrastructures, i.e. urban trees are a common rtool to improve the urban micro-climate for humans. Vital and well growing trees provide greatest benefits such as evaporative cooling, shading, air filtering and carbon storage. However, urban tree growth is often negatively affected by urban growing conditions such as high soil sealing with compacted tree pits providing small growing spaces with limited water, nutrient and oxygen supply, further warm temperatures and high pollution emissions. This study analyzed the growth of urban and rural African mahogany(Khaya senegalensis(Desr.) A. Juss.) trees in the city of Hanoi, Vietnam and the effects of the surrounding climate conditions on tree growth.Results: The results showed that rural African mahogany trees grew better than trees situated in the city center, which is contrary to other results on tree growth of temperate and subtropical cities worldwide. Moreover tree growth was similar regardless of the time of growth. Other results regarding stem growth of African mahogany located in different areas of Hanoi(east, west, north, city center) revealed a better growth in the northern and western outskirts of the city compared to the growth of trees in the city center.Conclusion: African mahogany trees in the urban centers of Hanoi showed a decreased growth compared to rural trees,which was likely induced by a low ground-water level and high pollution rates. In view of climate change and global warming, the decreased tree growth in the city center may also affect tree service provision such as shading and cooling. Those climate mitigation solutions are strongly needed in areas severely affected by climate change and global warming such as Vietnam.展开更多
A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure ...A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure and growth of mixed species forests may fundamentally differ from monocultures. Here we suggest how to progress from the present accumulation of phenomenological findings to a design of mixed-species stands and advanced silvicultural prescriptions by means of modelling. First, the knowledge of mixing effects on the structure and growth at the stand, species, and individual tree level is reviewed, with a focus on those findings that are most essential for suitable modelling and silvicultural designs and the regulation of mixed stands as opposed to monocultures. Then, the key role of growth models, stand simulators, and scenario assessments for designing mixed species stands is discussed The next section illustrates that existing forest stand growth models require some fundamental modifications to become suitable for both monocultures and mixed-species stands. We then explore how silvicultural prescriptions derived from scenario runs would need to be both quantified and simplified for transfer to forest management and demonstrated in training plots. Finally, we address the main remaining knowledge gaps that could be remedied through empirical research.展开更多
Climate change is causing more frequent and severe climatic events,such as extreme heat and co-occurring drought,potentially accelerating tree mortality.Which tree species will cope better with those extreme events is...Climate change is causing more frequent and severe climatic events,such as extreme heat and co-occurring drought,potentially accelerating tree mortality.Which tree species will cope better with those extreme events is still being researched.This study focuses on heat as a physiological stress factor and interspecifi c variation of thermal tolerance and sensitivity traits in 15 temperate coniferous and broad-leaved tree species.We investigate(1)whether thermal tolerance and sensitivity traits correlate with a droughtrelated physiological trait,particularly the leaf turgor loss point(πtlp,wilting point),and(2)how thermal tolerance and sensitivity traits co-vary within diff erent tree-functional types classifi ed by morphological and physiological traits of the leaf,i.e.,leaf mass per area(LMA)and percentage loss of area(PLA).The study was carried out in the Traunstein Forest Dynamics Plot of the ForestGEO network in Germany.The temperature response of the maximum quantum yield of photosystem II(F_(v)/F_(m))on leaf discs was determined,from which various physiological leaf traits were estimated,one of which is the breaking point temperature(T_(5)),the temperature at which F_(v)/F_(m)declines by 5%.Additionally,the temperature of 50%(T_(50))and 95%(T_(95))decline in F_(v)/F_(m)was evaluated.The decline width between T_(50)and T 5(DW T_(50)−T_(5))was taken as an indicator of the species’thermal sensitivity.The breaking point temperature ranged from 35.4±3.0 to 47.9±3.9℃among the investigated tree species and T 50 ranged between 46.1±0.4 and 53.6±0.7℃.A large interspecifi c variation of thermal tolerance and sensitivity was found.European ash(Fraxinus excelsior L.)was the most heat-sensitive species,while Wild cherry(Prunus avium L.)was the least heat-sensitive species.Species with a more negativeπtlp tended to have a higher breaking point temperature than species with a less negativeπtlp.A lower thermal sensitivity characterized species with a higher LMA,and high PLA was found in species with low thermal sensitivity.Accordingly,species with thicker and tougher leaves have lower thermal sensitivity which coincides with a lower wilting point.We conclude that species that develop drought-adapted foliage can cope better with heat stress.Further,they might be able to maintain transpirational cooling during combined heat and drought stress,which could lessen their mortality risk during climatic extremes.展开更多
Background: Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerni...Background: Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerning the variation in competitive effect and response of different species along climatic gradients. In this study, we investigated the importance of climate, tree size, and competition on the growth of three tree species: spruce(Picea abies), fir(Abies alba), and beech(Fagus sylvatica), and examined their competitive response and effect along a climatic gradient.Methods: We selected 39 plots distributed across the European mountains with records of the position and growth of 5,759 individuals. For each target species, models relating tree growth to tree size, climate and competition were proposed. Competition was modelled using a neighbourhood competition index that considered the effects of inter-and intraspecific competition on target trees. Competitive responses and effects were related to climate.Likelihood methods and information theory were used to select the best model.Results: Our findings revealed that competition had a greater impact on target species growth than tree size or climate. Climate did influence the competitive effects of neighbouring species, but it did not affect the target species? response to competition. The strength of competitive effects varied along the gradient, contingent on the identity of the interacting species. When the target species exhibited an intermediate competitive effect relative to neighbouring species, both higher inter-than intraspecific competitive effects and competition reduction occurred along the gradient. Notably, species competitive effects were most pronounced when the target species' growth was at its peak and weakest when growing conditions were far from their maximum.Conclusions: Climate modulates the effects of competition from neighbouring trees on the target tree and not the susceptibility of the target tree to competition. The modelling approach should be useful in future research to expand our knowledge of how competition modulates forest communities across environmental gradients.展开更多
Introduction:Changes in socio-economy and climate are affecting the demand of wood products globally.At the same time,society requires that forest supporting structures like biodiversity are maintained and preserved w...Introduction:Changes in socio-economy and climate are affecting the demand of wood products globally.At the same time,society requires that forest supporting structures like biodiversity are maintained and preserved while the demand for wood products is also covered.Management support systems,like forest simulation models,that are able to analyze connections as well as quantify trade-offs between forest structure management and biodiversity indicators are highly sought.However,such models are generally developed for the local plot or stand scale only and ecosystem-scale analyses are missing.In this study,we analyzed ways to interpret results from the single-tree forest simulator SILVA from the local to the ecosystem scale.We also analyzed the impacts of forest management on biodiversity using two species diversity indicators,the species profile index and the species intermingling,for scenarios adapted from the GLOBIOM model in the case study“Augsburg Western Forests”,a high productive region in South-Germany.In order to evaluate diversity tendencies across the ecosystem,we applied a moving window methodology.Results:The relevance of scale for the interpretation of management effects on species diversity was shown and clear differences between scenarios revealed.The differences between scenarios were particularly visible when comparing the two diversity indicators,especially because the species profile index focuses on vertical and horizontal information and the species intermingling focuses mainly on horizontal structures.Under a multifunctional scenario,biodiversity values could be preserved at all scales in the vertical dimension.However,under a bio-energy-oriented scenario diversity at the local scale was reduced,although at the ecosystem level,and only in the horizontal dimension,diversity remained at relatively high values.Conclusions:With this work,we can conclude that integrative modeling,with multiple scenarios,is highly needed to support forestry decision making and towards the evolution of forest management to consider the ecosystem scale,especially when the optimization of diversity is a management priority.展开更多
基金the 2019 call for the predoctoral contract at the University of Valladolid cofinanced by Banco de Santander and projects‘CLU-2019-01-Unidad de Excelencia Instituto iuFOR’,‘PID2021-126275OB-C21’and‘PID2021-126275OB-C22’-Integrated Forest Management along complexity gradients(IMFLEX)‘MCIN/AEI/10.13039/501100011033/FEDER,UE’,which received financial support from the Regional Government of Castilla and León,Spainthe European Regional Development Fund(ERDF).
文摘Neighborhood competition is a critical driver of individual tree growth,and aboveground biomass(AGB)accumulation,which together play key roles in forest dynamics and carbon storage.Therefore,accurate biomass estimation is essential for understanding ecosystem functioning and informing forest management strategies to mitigate climate change.However,integrating neighborhood competition into biomass estimation models,particularly for young mixed forest stands,remains unexplored.In this study,we examined how incorporating neighborhood competition improves biomass prediction accuracy and how the influence of neighborhood competition differs between Scots pine(Pinus sylvestris L.)and Pyrenean oak(Quercus pyrenaica Willd.),as well as the relative contributions of intra-and interspecific competition to AGB.Our findings revealed that including neighborhood competition alongside tree size variables(DBH and total tree height)significantly improved the predictive accuracy of AGB models for Scots pine.This addition reduced the root mean square error(RMSE)by 14% and improved the model efficiency factor(MEF)by 15%.Furthermore,intraspecific competition in Scots pine slightly reduced AGB,whereas interspecific competition had a significant negative effect on AGB.In contrast,DBH alone was the best predictor of AGB for Pyrenean oak,as neighborhood competition did not improve model performance.Also,intra-and interspecific competition in Pyrenean oak had positive but nonsignificant effects on AGB.These findings highlight the important role of competition in biomass models and suggest species-specific approaches in competition dynamics to inform sustainable forest management and climate change adaptation strategies.
基金the AUDI Environmental Foundation for funding this study(project 5101954:“Reaktionskinetik von Baumenunter Klimaveranderungen”—“Reaction kinetics of trees under climate change”).
文摘The growing conditions of urban trees differ substantially from forest sites and are mainly characterized by small planting pits with less water, nutrient and aeration availability, high temperatures and radiation inputs as well as pollution and soil compaction. Especially, global warming can amplify the negative effects of urban microclimates on tree growth, health and well-being of citizens. To quantify the growth of urban trees influenced by the urban climate, ten urban tree species in four climate zones were assessed in an overarching worldwide dendrochronological study. The focus of this analysis was the species water oak (Quercus nigra L.) in Houston, Texas, USA. Similar to the overall growth trend, we found in urban trees, water oaks displayed an accelerated growth during the last decades. Moreover, water oaks in the city center grew better than the water oaks growing in the rural surroundings of Houston, though this trend was reversed with high age. Growth habitat (urban, suburban, rural and forest) significantly affected tree growth (p < 0.001) with urban trees growing faster than rural growing trees and forest trees, though a younger age of urban trees might influence the found growth patterns. Growing site in terms of cardinal direction did not markedly influence tree growth, which was more influenced by the prevalent climatic conditions of Houston and the urban climate. Higher temperatures, an extended growing season and eutrophication can cause an accelerated growth of trees in urban regions across, across all climatic zones. However, an accelerated growth rate can have negative consequences like quicker ageing and tree death resulting in higher costs for new plantings and tree management as well as the decrease in ecosystem services due to a lack of old trees providing greatest benefits for mitigating the negative effects of the urban climate.
基金funded by the Bavarian Ministry of Nutrition,Agriculture and Forestry through the projects“Acclimation of Forest Trees”(grant#kliffw006)“Maintenance and Monitoring of long term experiments”(W007,grant#Gz:7831-1/874).
文摘Background In Central Europe,forests are increasingly affected by various disturbances,resulting in an increasing gap formation in the canopy.In order to support goal-oriented management,more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.Methods This work compared trees'growth and crown structure at the edge of a transient gap,with a gap size of more than 80m^(2),with trees in the stand that were at least 30m away from the gap.A total of 249 European beeches(Fagus sylvatica L.),Norway spruces(Picea abies L.Karst),Scots pines(Pinus sylvestris L.),oaks(Quercus spp.;Quercus petraea(Matt.)Liebl.,Quercus robur L.),and silver firs(Abies alba Mill.)were examined on long-term experimental plots in southern Germany.Various crown measures were developed and calculated using high-resolution terrestrial laser scanning(TLiDAR)to capture the three-dimensional crown structures.Growth responses to edge conditions were measured based on tree rings.Using linear mixed models,we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.Results We identified i)species-specific acclimation of the crown of edge trees after the gap formation,ii)under wet soil moisture conditions a growth increase of 25%–45%for beech,pine,and oak edge trees and growth losses of 5%–60%for spruce and fir and iii)coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.Conclusion Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.
基金Funding Source:AUDI Environmental Foundation(project 5101954:"Reaktionskinetik von B(a|¨)umen unter Klimaver(a|¨)nderungen"-"Reaction kinetics of trees under climate change")
文摘Background: Recent projections expect that Vietnam will be affected most severely by climate change with higher temperatures, more precipitation and rising sea levels. Especially increased temperatures will worsen the situations in cities, amplifying the urban heat island effect. Green infrastructures, i.e. urban trees are a common rtool to improve the urban micro-climate for humans. Vital and well growing trees provide greatest benefits such as evaporative cooling, shading, air filtering and carbon storage. However, urban tree growth is often negatively affected by urban growing conditions such as high soil sealing with compacted tree pits providing small growing spaces with limited water, nutrient and oxygen supply, further warm temperatures and high pollution emissions. This study analyzed the growth of urban and rural African mahogany(Khaya senegalensis(Desr.) A. Juss.) trees in the city of Hanoi, Vietnam and the effects of the surrounding climate conditions on tree growth.Results: The results showed that rural African mahogany trees grew better than trees situated in the city center, which is contrary to other results on tree growth of temperate and subtropical cities worldwide. Moreover tree growth was similar regardless of the time of growth. Other results regarding stem growth of African mahogany located in different areas of Hanoi(east, west, north, city center) revealed a better growth in the northern and western outskirts of the city compared to the growth of trees in the city center.Conclusion: African mahogany trees in the urban centers of Hanoi showed a decreased growth compared to rural trees,which was likely induced by a low ground-water level and high pollution rates. In view of climate change and global warming, the decreased tree growth in the city center may also affect tree service provision such as shading and cooling. Those climate mitigation solutions are strongly needed in areas severely affected by climate change and global warming such as Vietnam.
基金the European Union for funding of the project "Management of mixed-species stands.Options for a low-risk forest management (REFORM)"(# 2816ERA02S)the Bavarian State Ministry for Nutrition,Agriculture,and Forestry for permanent support of the project W 07" Long-term experimental plots for forest growth and yield research "(# 7831-22209-2013)+1 种基金the German Science Foundation for providing the funds for the projects PR 292/12-1" Tree and stand-level growth reactions on drought in mixed versus pure forests of Norway spruce and European beech"the National Institute of Food and Agriculture/Pennsylvania Agriculture Experiment Station project PEN 04516 for its support
文摘A better understanding and a more quantitative design of mixed-species stands will contribute to more integrative and goal-oriented research in mixed-species forests. Much recent work has indicated that the structure and growth of mixed species forests may fundamentally differ from monocultures. Here we suggest how to progress from the present accumulation of phenomenological findings to a design of mixed-species stands and advanced silvicultural prescriptions by means of modelling. First, the knowledge of mixing effects on the structure and growth at the stand, species, and individual tree level is reviewed, with a focus on those findings that are most essential for suitable modelling and silvicultural designs and the regulation of mixed stands as opposed to monocultures. Then, the key role of growth models, stand simulators, and scenario assessments for designing mixed species stands is discussed The next section illustrates that existing forest stand growth models require some fundamental modifications to become suitable for both monocultures and mixed-species stands. We then explore how silvicultural prescriptions derived from scenario runs would need to be both quantified and simplified for transfer to forest management and demonstrated in training plots. Finally, we address the main remaining knowledge gaps that could be remedied through empirical research.
文摘Climate change is causing more frequent and severe climatic events,such as extreme heat and co-occurring drought,potentially accelerating tree mortality.Which tree species will cope better with those extreme events is still being researched.This study focuses on heat as a physiological stress factor and interspecifi c variation of thermal tolerance and sensitivity traits in 15 temperate coniferous and broad-leaved tree species.We investigate(1)whether thermal tolerance and sensitivity traits correlate with a droughtrelated physiological trait,particularly the leaf turgor loss point(πtlp,wilting point),and(2)how thermal tolerance and sensitivity traits co-vary within diff erent tree-functional types classifi ed by morphological and physiological traits of the leaf,i.e.,leaf mass per area(LMA)and percentage loss of area(PLA).The study was carried out in the Traunstein Forest Dynamics Plot of the ForestGEO network in Germany.The temperature response of the maximum quantum yield of photosystem II(F_(v)/F_(m))on leaf discs was determined,from which various physiological leaf traits were estimated,one of which is the breaking point temperature(T_(5)),the temperature at which F_(v)/F_(m)declines by 5%.Additionally,the temperature of 50%(T_(50))and 95%(T_(95))decline in F_(v)/F_(m)was evaluated.The decline width between T_(50)and T 5(DW T_(50)−T_(5))was taken as an indicator of the species’thermal sensitivity.The breaking point temperature ranged from 35.4±3.0 to 47.9±3.9℃among the investigated tree species and T 50 ranged between 46.1±0.4 and 53.6±0.7℃.A large interspecifi c variation of thermal tolerance and sensitivity was found.European ash(Fraxinus excelsior L.)was the most heat-sensitive species,while Wild cherry(Prunus avium L.)was the least heat-sensitive species.Species with a more negativeπtlp tended to have a higher breaking point temperature than species with a less negativeπtlp.A lower thermal sensitivity characterized species with a higher LMA,and high PLA was found in species with low thermal sensitivity.Accordingly,species with thicker and tougher leaves have lower thermal sensitivity which coincides with a lower wilting point.We conclude that species that develop drought-adapted foliage can cope better with heat stress.Further,they might be able to maintain transpirational cooling during combined heat and drought stress,which could lessen their mortality risk during climatic extremes.
基金This publication is based upon work from COST Action CLIMO(CA15226) supported by COST (European Cooperation in Science and Technology)the UMBRACLIM project (PID2019-111781RB-I00)funded by the Spanish Ministry for Science and Innovation. Teresa Valor was contracted with a grant“Juan de la Cierva-Formaci on”(FJC2018-036673-I). Z.S. received funds from the grant no. APVV-20-0365 and from project TreeAdapt supported by the MPRV SR. Aitor Ameztegui is supported by a Serra-Húnter fellowship by the Generalitat de Catalunya。
文摘Background: Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerning the variation in competitive effect and response of different species along climatic gradients. In this study, we investigated the importance of climate, tree size, and competition on the growth of three tree species: spruce(Picea abies), fir(Abies alba), and beech(Fagus sylvatica), and examined their competitive response and effect along a climatic gradient.Methods: We selected 39 plots distributed across the European mountains with records of the position and growth of 5,759 individuals. For each target species, models relating tree growth to tree size, climate and competition were proposed. Competition was modelled using a neighbourhood competition index that considered the effects of inter-and intraspecific competition on target trees. Competitive responses and effects were related to climate.Likelihood methods and information theory were used to select the best model.Results: Our findings revealed that competition had a greater impact on target species growth than tree size or climate. Climate did influence the competitive effects of neighbouring species, but it did not affect the target species? response to competition. The strength of competitive effects varied along the gradient, contingent on the identity of the interacting species. When the target species exhibited an intermediate competitive effect relative to neighbouring species, both higher inter-than intraspecific competitive effects and competition reduction occurred along the gradient. Notably, species competitive effects were most pronounced when the target species' growth was at its peak and weakest when growing conditions were far from their maximum.Conclusions: Climate modulates the effects of competition from neighbouring trees on the target tree and not the susceptibility of the target tree to competition. The modelling approach should be useful in future research to expand our knowledge of how competition modulates forest communities across environmental gradients.
基金This research was funded through the 2015-2016 BiodivERsA COFUND for research proposals,with the national funders“German Ministry of Education and Research-BMBF”and“Deutsche Forschungsgemeinschaft-DFG.”
文摘Introduction:Changes in socio-economy and climate are affecting the demand of wood products globally.At the same time,society requires that forest supporting structures like biodiversity are maintained and preserved while the demand for wood products is also covered.Management support systems,like forest simulation models,that are able to analyze connections as well as quantify trade-offs between forest structure management and biodiversity indicators are highly sought.However,such models are generally developed for the local plot or stand scale only and ecosystem-scale analyses are missing.In this study,we analyzed ways to interpret results from the single-tree forest simulator SILVA from the local to the ecosystem scale.We also analyzed the impacts of forest management on biodiversity using two species diversity indicators,the species profile index and the species intermingling,for scenarios adapted from the GLOBIOM model in the case study“Augsburg Western Forests”,a high productive region in South-Germany.In order to evaluate diversity tendencies across the ecosystem,we applied a moving window methodology.Results:The relevance of scale for the interpretation of management effects on species diversity was shown and clear differences between scenarios revealed.The differences between scenarios were particularly visible when comparing the two diversity indicators,especially because the species profile index focuses on vertical and horizontal information and the species intermingling focuses mainly on horizontal structures.Under a multifunctional scenario,biodiversity values could be preserved at all scales in the vertical dimension.However,under a bio-energy-oriented scenario diversity at the local scale was reduced,although at the ecosystem level,and only in the horizontal dimension,diversity remained at relatively high values.Conclusions:With this work,we can conclude that integrative modeling,with multiple scenarios,is highly needed to support forestry decision making and towards the evolution of forest management to consider the ecosystem scale,especially when the optimization of diversity is a management priority.