期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
压铸充型过程中卷气现象的数值模拟研究 被引量:18
1
作者 李帅君 熊守美 +1 位作者 Mei Li John Allison 《金属学报》 SCIE EI CAS CSCD 北大核心 2010年第5期554-560,共7页
采用一种液-气两相耦合模型模拟了压铸充型过程中的卷气现象,对卷入金属液中的每个气泡均单独计算其压力变化的趋势,通过压力传递将液-气两相联系在一起.为了验证模型的可靠性和准确性,开展了专门针对压铸的高速水模拟实验,并采用液-气... 采用一种液-气两相耦合模型模拟了压铸充型过程中的卷气现象,对卷入金属液中的每个气泡均单独计算其压力变化的趋势,通过压力传递将液-气两相联系在一起.为了验证模型的可靠性和准确性,开展了专门针对压铸的高速水模拟实验,并采用液-气两相耦合模型以及单相流模型分别进行了模拟,通过比较可以证实两相耦合模型在模拟卷气方面比单相流模型具有更高的精确度. 展开更多
关键词 压铸 卷气 液-气两相耦合模型
原文传递
Numerical Analysis of Nozzle Clearance's Effect on Turbine Performance 被引量:19
2
作者 HU Liangjun YANG Ce +2 位作者 SUN Harold ZHANG Jizhong LAI Mingchia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期618-625,共8页
Variable nozzle turbine (VNT) has become a popular variable geometry turbine (VGT) technology for the diesel engine application. Nozzle clearance, which can't be avoided on the hub and shroud side of the VNT turb... Variable nozzle turbine (VNT) has become a popular variable geometry turbine (VGT) technology for the diesel engine application. Nozzle clearance, which can't be avoided on the hub and shroud side of the VNT turbine due to the pivoting stators, can lead to turbine performance deterioration. However, its mechanism is still not clear. In this paper, numerical investigation, which is validated by experiment, is carried out to study the mechanism of the nozzle clearance's effect on the turbine performance. Firstly, performance of the mixed flow turbine with fixed nozzle clearances tested on flow bench. Performance of the tested turbine with the same nozzle clearance is numerically simulated. The numerical result agrees well with the test data, which proves correct of the numerical method. Then the turbine performance with different nozzle clearances is numerically analyzed. The research showed that with nozzle clearance, flow loss in the nozzle increases at first and it reaches the maximum value when the clearance ratio is 5%. Flow at the exit of the nozzle becomes less uniform with nozzle clearance. The negative incidence angle of the rotor also increases with nozzle clearance and leads to more incidence angle loss in the rotor. The low energy fluid formed in the nozzle due to the nozzle clearance migrates from hub to shroud side in the rotor, which is another main reason for the rotor's performance degradation. The present research exposed the mechanism of the dramatically decrease of the turbine performance with nozzle clearance: (a) The loss associated with the nozzle leakage increases with the nozzle clearance; (b) The flow loss grows up quickly in the rotor due to the incidence angle loss and migration of the low energy fluid from hub to shroud side. 展开更多
关键词 nozzle clearance variable nozzle turbine (VNT) mixed flow turbine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部